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ABSTRACT

This thesis analyzes a Bayesian method for determining

* the number of samples that are needed to produce a desired

confidence interval size for a proportion or probability.

It compares the necessary sample size from Bayesian methods

with that from classical methods and develops computer

programs relating sample size and confidence interval size

when a Beta prior distribution is employed. Tables and

graphs are developed to assist an experimenter in determin-

ing the number of samples needed to produce desired

confidence in this estimate of a proportion or probability.
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I. INTRO.DUCQTLIN

The Naval Air Systems Command has established the Age

Exploration Program for F/A-18 aircraft using Reliability-

Centered Maintenance procedures in an effort to reduce

maintenance costs by specifying only maintenance insuring

f light integrity. Among other features of this program,

f leet leader aircraft are sampled on a regular basis, with

emphasis on inspection f or cracks in selected structural

components. Because of the potential dangers presented by

cracks in aircraft, the Engineering Support Office at North

Island Naval Air Station is concerned with determining the

actual probability of detection of these cracks for each of

its aircraft inspectors. Their proposal is to prepare test

specimens (with cracks) which may be used to sample an

inspector's detection performance, leading to estimates of

detection probability. This thesis responds to their

question of how many trials are necessary to estimate

detection probability, and to the more general question of

the sample size needed to estimate a proportion or probabil-

ity using a set of Bernoulli trials.

There are many ways to produce estimators for unknown

parameters such as our parameter; the probability of

detection. Some of these methods have excellent properties.

After examining North Island's problem, we came to the
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conclusion that the beat way to estimate the unknown

probability would be to use a confidence interval. "A

confidence interval for an unknown parameter gives both an

indication of the numerical value of an unknown parameter as

well as a measure of how confident we are of that numerical

value." [Ref. 1:p. 383] It is important to note that the

size of the confidence interval depends upon the number of

samples used to determine the confidence interval.

The primary focus of our study will be to determine the

number of samples needed to obtain a specific confidence

interval size for a proportion or probability. It will be

seen that the approaches used throughout this work can be

applied to more situations than just North Island's problem.

By using the extensive tables and graphs included in the

appendices of this document, the decision maker can relate

the necessary number of samples to the appropriate con-

fidence interval size that is warranted by his situation.

There are various methods that can be used to f ind a

sample size to estimate a proportion or a probability. In

Chapter II we will describe how we can use Classical methods

to determine sample size. We will explain how we can

determine a point estimate and how this point estimate can

be used to obtain a confidence interval. Then we will use

the confidence interval to determine the number of samples

necessary to achieve a desired confidence interval size. In

the next chapter we will describe the prior, sampling, and

2



posterior distributions as they are related to Bayes

Theorem. Also, in Chapter III we will introduce the Beta

density function as our prior distribution. Then using the

Binomial as our sampling distribution, we will show that the

posterior density function is also Beta. In Chapter IV we

will include an explanation of how a decision maker can

determine his parameters for the Beta prior distribution.

We will develop a set of graphs that can be used by this

decision maker to determine the necessary sample size to

obtain a desired 95% confidence interval size for the

proportion. The next chapter will explain how we can use

different Beta prior distributions with the same mean to

determine the required sample size for estimating a

proportion.

Finally, we will present a summary of what we ac-

complished and some suggestions for further research in

using Bayesian methods to reduce the necessary number of

samples to estimate a proportion or probability.
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II. FINDING A SAMPLE SIZE TO ESTIMATE A PROPORTION USING
CLASSICAL METHODS

This chapter will explain how we can use classical

methods to find a sample size to estimate a proportion or

probability. First, we will describe how we can attain a

point estimate for a probability. Then we will use this

point estimate to establish a confidence interval for the

proportion. The confidence interval for the proportion that

is derived from the point estimate will provide a measure of

how accurate this point estimate is. Next, we will use the

confidence interval to determine how many samples we will

need for a particular interval size.

A. THE POINT ESTIMATE FOR A PROPORTION

"Typically, in a problem of parameter estimation we

assume we have available a random sample of a random

variable X, whose probability law is assumed known, except

for the values for the parameters of the probability law.

The problem then is to use the observed numbers to guess

(estimate) these unknown parameter values." [Ref. 1:p. 359]

From this one can say in general, that the estimator of an

unknown parameter will be a function of the random variable

X. One method that can be used to estimate our unknown

proportion is to obtain a point estimate. "Basically, point

estimation concerns the choosing of a statistic, that is, a

single number calculated from sample data (and perhaps other

4



information) for which we have some expectation, or

assurance, that it is 'reasonably close' to the parameter it

is supposed to estimate". (Ref. 2:p. 186] If we were to

consider North island's problem, we could calculate a point

estimate for our detection probability Pd by assuming that

each inspection conducted by a specific aircraft inspector

was a Bernnulli trial with the same parameter Pd. We will

assume that each trial is independent. I f we conduct n

inspections on n cracked aircraft components, and let

Xi 1 if crack in component is discovered

Xi 0 otherwise

then Xl, X2, ....,Xn is a random sample of a Bernoulli random

variable X. Once our trials are completed we have observed

sample values x1 , x2, ....,X3 and we can estimate our

proportion by the following,

(2.1)
A k

or

where

This is the point estimate for our proportion.

B. DETERMINING THE CONFIDENCE INTERVAL FOR A PROPORTION

A common classical method for obtaining a 954 confidence

interval for detection probability Pd is to use the normal

approximation to the binomial distribution, which is

5



Ad - .6kd-d) +( 1.96pd 1.6 d (In -5Pd ! Pd 1.9
[Ref. 3:.p. 112] (2.2)

"A good rule of thumb is to use the normal approximation to

the binomial only when np and n(l-p) are both greater than

5." rRef. 2:p. 112] With Equation 2.2 we can compute a 95%

confidence interval for our proportion. For example,

suppose that 20 items with cracks are inspected and 15 are

identified as having cracks. Then from Equation 2.1 our

point estimate of detection Pd is 0.75 and the 95% con-

fidence interval is, from Equation 2.2,

0.75 - 0.19 5 Pd 5 0.75 + 0.19,

or

0.56 :5 Pd :5 0.94

This says that as a result of our sample of 20 items, we are

95% certain that this interval (0.56 to 0.94) contains the

true value of our proportion Pd. One can observe that the

interval size for this example is 0.38. One can also

observe from Equation 2.2 that the greater the sample size

n, the smaller will be the size of the confidence interval.

C. FINDING SAMPLE SIZE FROM CONFIDENCE INTERVAL

The size of our sample can be determined by specifying

how accurate we wish our estimate to be. This is reflected

by the size of our confidence interval. Note that the

interval is

6



where ~i-d 23

Hence, if we desire a confidence interval of +A, we simply

solve Equation 2.3 for n and get

.96 )21( P)(24

If we are without any prior data we must guess at our sample

result Pd in order to determine n. However, sample size

from Equation 2.4 is maximized at Pd - 0.5, so if we do not

want to guess, worst case planning suggests that we use

- (96 ) 2(0.5)(0.5)

or

n =0.9604/A 2.

This yields the results seen in Table 1 which show the

required number of samples to obtain a 95% confidence

interval of various sizes when Pd - 0.5.

This is conservative. If we agreed that the probable

detection probability was closer to 0.7, we would use

n (1.9 )2(0.7) (0.3)

or

n -0.8067/A 2

This yields the results seen in Table 2 which shows the

required number of samples to obtain a 95% confidence

interval sizes when Pd -0.7.

7



TABLE 1

NUMBER OF SAMPLES NECESSARY TO OBTAIN
A DESIRED 95% CONFIDENCE INTERVAL SIZE
USING A POINT ESTIMATE OF Pd = 0.5

Desired 95% Confidence Required Sample
Interval Size = 2A Size n

0.05 1537
0.10 384
0.15 171
0.20 96
0.25 62
0.30 43
0.35 32

TABLE 2

NUMBER OF SAMPLES NECESSARY TO OBTAIN
A DESIRED 95% CONFIDENCE INTERVAL SIZE

USING A POINT ESTIMATE OF Pd = 0.7

Desired 95% Confidence Required Sample
Interval Size -2A Size n

0.05 1291
0.10 323
0.15 143
0.20 81
0.25 52
0.30 36
0.35 26



In Chapter III we will discuss how we can use Bayesian

Methods to estimate a proportion, and how by the use of

prior information, the needed number of observations may be

less than that shown in Tables 1 and 2 above.

9



III. BAYESIAN APPROACH TO ESTIMATE A PROPORTION

Another way we can determine a sample size to estimate a

proportion is to use a Bayesian approach. The general idea

behind a Bayesian approach to estimation is that we have

some knowledge about possible values of the parameter prior

to taking the observations, and this information may be

aggregated with the experimental results to provide a better

estimate (smaller confidence interval) than that from the

experimental results alone.

In this chapter we will describe the Bayesian approach

that will be used throughout this writing. We will

accomplish this by describing the three parts of the

Bayesian method that are related by Bayes Theorem: the

prior distribution, the sampling distribution and the

posterior distribution. Next we will explain our rationale

for selecting the Beta distribution as our prior density

function and the Binomial as our sampling distribution.

Finally, we will use the Beta prior distribution and the

Binomial sampling distribution to derive our posterior

density function, yielding the known result that the

posterior density function is a Beta distribution with

different parameters than the prior distribution.

10



A. BAYES THEOREM AND ITS PARTS

An alternative method to estimate a proportion is to use

a Bayesian approach. This Bayesian approach makes use of

the expertise of engineers, scientists and others who

generally have sound intuition concerning the problem area

that is being analyzed. These experts can place subjective

bounds on the range of the possible values of the parameters

to be estimated. By using this expert intuition we can

achieve the same confidence interval size with fewer

samples.

Bayesian methods are derived from Bayes Theorem. If we

let Y be a continuous random variable with density function

f(Y) so that

f. A~Y r- 1,

and we are given effect k, Bayes theorem states that

Pr(Y Ik) - Pr(kI VY 1)

f P(k 1)(Y)dY

(Ref. 4:p. 558] (3.1)

Equation 3.1 can be broken into three parts. The

sampling distribution is Pr(kJY). The sampling distribution

is the probability function from which the observations of k

are to be taken. The prior distribution is f(Y). "The

prior distribution of a parameter S is a probability

function or probability expressing our degree of belief

11



about the value of 8, prior to observing a sample of a

random variable k whose distribution function depends on

e.- [Ref. l:p. 553] The posterior distribution is f(Ylk)

and its mean value is our Bayesian Estimate.

B. THE SELECTION OF THE PRIOR

We will use the posterior distribution of our Bayesian

approach to estimate e. The value e is our proportion and

can take on any value between 0 and 1. Therefore, our prior

probability distribution must be continuous.

The expertise of those familiar with the problem area

may provide prior bounds (on the proportion) that are closer

than 0 and 1.0, and the prior probability distribution

should reflect this information. Two ways to set bounds on

e (the unknown probability) and consequently establish a

prior probability distribution would be to use the Uniform

distribution or the Beta distribution. The uniform density

function is
e~~A) - e-u

O)

where, (3.2)

and the Beta density function is

AO) r( + #) -'( - 0 '
-g (3.3)

where 0 5 0 : 1,

a, > 0.

12



Figure 1 shows a Uniform distribution for a random variable

that is bounded between 0.142 and 0.858, and a Beta

distribution that has 98% of its density between 0.142 and

0.10.4 a i1.0

Figure 1 Beta Distribution (a - 4, p - 4) and Uniform
Distribution a - 0.142, b - 0.858

0.858 (viz., 1% in each tail), with parameters a = 4, p - 4.

The points (0.142 and 0.858) that bound 98% of the density

of the Beta distribution were determinad by calculating the

inverse cumulative distribution function of a Beta distribu-

tion with parameters a - 4, p - 4, at 0.01 and 0.99. This

13



method can be duplicated using other values of a and Pto

insure that 98% of the density will lie between the two

resulting points.

By using the Beta distribution, our experts will be able

to better control their prior beliefs. If a group of

experts feel that the likelihood of 0 occurring in a

particular section is greater than that of it occurring in

another section, then by selecting the appropriate para-

meters a and 0 of the Beta distribution, they can institute

a prior distribution to accommodate their desires. For

these and other reasons we will use the Beta distribution as

our prior distribution. If the experimentor simply gives

bounds on 8 as he would for a uniform distribution, a Beta

prior (as a two parameter distribution) may be "fit" to

those bounds. Also, one should remember that the Beta

distribution can be skewed to one side or the other, based

on the values of a and P. This should be taken into account

when selecting the prior.

The probability function from which we will take our

observations of k will be the binomial distribution. This

is because the binomial distribution counts the number of

success for n Bernoulli trials, viz.,

Pr(klIP) P)- , k - 0, 1....,n

(3.4)

14



C. DERIVATION OF THE POSTERIOR DISTRIBUTION

Using a prior distribution that is Beta (a, ) and a

sample distribution that is binomial (n, p), we have from

Equations 3.1, 3.3, and 3.4, posterior distribution:
( 4- fl) P)~ 9p)J Ml( ~k (I )n.-k

Prp ) 2afl/) (k)
rF y + ). _, . pip(/" , .. ,,-k d

Prfol k)= pk)

where k is the number of successes. If we combine terms,

our posterior becomes

na( 1 -/) . W+-, ,+n-k-1

Prfp Ik)=- r)rf ) kk I
F ia + l) ( " +k-l(I. P +n-k-i.

r()r(&p) k)Jo" (,-p) dp

Now we can cancel out terms. Notice that the combinatorial
k )cancels out. We now have

Pvp ' 1 Ik)- P 2+ 1 P)P+-k-
_z~2k-1 _ +.-k-1

o P (Ip+ -dp

This can be rewritten as

Pr(p I1k) - P ' k1 pe'-

r( + k)r(# + n-k)
ri( + k + + - k)

or

Pr(pIk).. r( + # + n) 2+k-1

P -r( + k)r(/i - n- k) P  (-?

which is our posterior distribution. The posterior derived

above is a Beta distribution with parameters a + k and

15



+ n - k and is a well-known result from Bayesian statis-

tics. [Ref. l:p. 565]

In the Bayesian approach the point estimate of p is the

mean of the posterior, or E~pIX], and a 95% confidence

interval on that parameter 0 is provided by the 2.5 and 97.5

percentiles of the posterior distribution. Thus, with a

Beta prior and Bernoulli trials, the size of the resulting

confidence interval depends upon the parameters of the prior

(a and 0), the sample size n, and k, the number of successes

in the sample.

As in the classical method, we need to know the number

of successes to determine sample size n. Therefore, we are

going to make the assumption that k, the number of suc-

cesses, will equal the mean of our prior distribution

multiplied by the number of samples or

This will result in the most conservative value of k if a -

p because it maximizes the variance of the Beta posterior

distribution, and it should result in a "fairly" conserva-

tive value otherwise. Making this assumption, we now have

Pr(p Ik) ( a )n)' P

+ a( 16

16



which becomes

r(Y + l +n)
Pr(p Ik)= P I#)"

r(,% +4. ),,)rw + ( )M)

If, at this point, we let a* - a + a n and let $*
+

= B + BJ ) n, we get
S+

Pr(p I k) = F= + W")

(3.5)

Equation 3.5 is the posterior distribution that we will use

throughout the remainder of this thesis. One should note

that Equation 3.5 is Beta (a*, B*).

In the next chapter we will discuss how we developed

tables, graphs and computer programs that can be used by an

experimenter to determine the necessary sample size to

estimate a proportion.

17



IV. PROVIDING THE DECISION MAKER THE MEANS TO DETERMINE
THE APPROPRIATE SAMPLE SIZE

In. this chapter we will direct our attention to using

the Bayesian approach as a way to f ind the sample size to

estimate a proportion. The decision maker will be asked

for information about subjective bounds for the unknown

proportion p. This information can be related to a prior

Beta distribution. From this Beta distribution and a

specification of the decision maker's desired 95% confidence

interval size (which he wishes after the sampling), the

necessary sample size may be determined. Our goal is to

provide tables and curves to facilitate the decision maker

in his determination of n.

First, we will describe the tables with which the

decision maker can select the parameters for his prior Beta

distribution that are the most appropriate for his subjec-

tive bounds. Next, we will describe how we constructed

these tables. When this is completed we will discuss our

methodology for developing the curves which can be used by

our decision maker to determine the appropriate sample size

for a proportion. Finally, we will use an example to

describe how the decision maker can use the curves and

computer programs to determine sample size.

Throughout this chapter we will explain how our computer

programs assisted us in our analysis and describe how these



programs can be used to assist another analyst in determin-

ing the sample size necessary to estimate a proportion.

At this point it is necessary to note that all programs

presented in this writing were written in APL and can be

duplicated on any computer capable of running an APL

workspace. It should also be noted that these programs use

extensive looping and may require a significant amount of

time to run on some computers.

A . SELECTION OF PARAMETERS FOR THE BETA PRIOR DISTRIBUTION
USING THE DECISION MAKER'S SUBJECTIVE BOUNDS ON THE
UNKNOWN PROPORTION

Before we can employ our Bayesian approach to determine

a sample size, we need to find the values for a and P, the

parameters of the Beta prior distribution, that best fit our

decision maker's subjective bounds. To determine these

valuep, the decision maker could use a set of tables such as

those found in Appendix A. He could simply scan these

tables until he found the values in the columns labelled

P. 1 0 and P*hi that best reflect his subjective bounds for

the unknown proportion.

As an example we have reproduced one of these tables as

Table 3. If the decision maker believes that the true value

of the proportion is somewhere between 0.14 and 0.86 he

would go down the table until he found values in the third

and fourth columns that are near 0.14 and 0.86 respectively.

In this example the decision maker would select the fourth

row with P.10 - 0.142270 and P-hi =0.857730. We can see

19



TABLE 3

MEANS, VARIANCES, AND 98% BOUNDS FOR
BETA DISTRIBUTION WITH a = 4

L P.o P.h Mean Var

4 1 .421318 .997491 .800000 .026667
4 2 .222072 .967318 .666667 .031746
4 3 .173070 .915270 .571429 .030612
4 4 .142270 .857730 .500000 .027778
4 5 .120950 .801798 .444444 .024691
4 6 .105262 .749974 .40x)o00 .021818
4 7 .093214 .702884 .363636 .019284
4 8 .083660 .660417 .333333 .017094
4 9 .075895 .622193 .307692 .015216
4 t0 .069455 .587759 .285714 .013605
4 I1 .064028 .556669 .266667 .012222
4 12 .059390 .528514 .250000 .011029
4 13 .055381 .502936 .235294 .009996
4 14 .051880 .479621 .222222 .009097
4 15 .048797 .458298 .210526 .008310
4 16 .046061 .438734 .200000 .007619
4 17 .043615 .420729 .190476 .007009
4 18 .041417 .404110 .181818 .006468
4 19 .039430 .388727 .173913 .005986
4 20 .037625 .374451 .166667 .005556
4 21 .035978 .361170 .160000 .005169
4 22 .034470 .348784 .153846 .004821
4 23 .033083 .337208 .148148 .004507
4 24 .031804 .326367 .142857 .004222
4 25 .030620 .316193 .137931 .003964
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the corresponding values for the parameters that best f it

that our decision maker's subjective bounds are a = 4 and

p=4.

In Chapter III we described a method that would insure

98% of our Beta prior density was between two possible

values for our proportion. This method involved taking the

inverse cumulative distribution function for a specific Beta

distribution at 0. 01 and 0. 99. This is the method we used

to design a computer program that could construct a set of

tables to determine the values of a and P.

To create Table 3 and Appendix A we used the APL program

entitled SENSE located in Appendix C. SENSE makes use of

the APL subroutines BQUAN, NQUAN and BETA which are located

in Appendix D. These subroutines calculate the inverse

cumulative distribution function of a Beta distribution at

0.02: and 0.99, yielding the bound values (P. 1 0 and P*hi) in

our tables. SENSE uses nested loops to vary the values of a

from 1 to 5 and vary 0 from 1 to 50.

More extensive tables could be created by increasing the

loops controlling the maximum values of our parameters.

This can be accomplished in accordance with the comments

provided at the beginning of SENSE.

Next, we will show how these parameters and the decision

maker's desired 95% confidence interval size may be used to

find the necessary sample size.
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B. DETERMINING SAMPLE SIZE WITH GRAPHS

In this section we will develop a not of graphs. These

graphs can be used by a decision maker to facilitate his

determination of sample size n using the parameters of the

Beta prior distribution and a desired 95% confidence

interval size. To accomplish this we will first explain our

methodology in developing the graphs. Then by use of an

example, we will explain how the decision maker can use

these graphs to determine the required sample size necessary

to estimate a proportion.

In Chapter III we derived our posterior density function

which was a Beta distribution with pdrameters a*, 0*. It

was also stated in Chapter III that we assumed k, the number

of successes, to be that which would result from the mean

value of the Beta prior distribution, or )nl This

assumption results in the parameters of our posterior Beta

distribution being

- ~ +k ~ ~ )(4.1)
and

~ )n (4.2)

where a and p are the parameters of our prior distribution

and n is the sample size.

once we have obtained the parameters of our Beta

posterior distribution we can compute the inverse cumulative

distribution function at 0.025 and 0.975 for a Beta
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distribution with parameters a* and *. This will yield the

lower and upper bounds of a 95% confidence interval. We can

then subtract the lower bound from the upper bound to

determine the size of the confidence interval. Table 4

demonstrates (for a Beta prior with a = - 4) what happens

as sample size n is increased from 1 to 1000. It can be

seen, as in the classical method, that when sample size

increases, the confidence interval size decreases. Hence,

with enough values of n we could create a table that would

tell us the value of n when we reached our desired con-

fidence interval size.

At this point it is important to realize that our

computer program uses subroutine BQUAN to calculate the

inverse cumulative density function at 0.025 and 0.975.

BQUAN has a shortcoming, in that, it cannot compute the

inverse cumulative distribution function for large values of
a* and p*. Hence, it is necessary that we use another

method to determine the bounds of our confidence interval

for large parameters.

The Beta distribution has the following relationship

with the F-distribution. That is

X, *F(22*. 2*)
- + a*F(2a*, 2l0)

[Ref. 5:p. 151 and p. 380] (4.3)

where Xr is the cumulative distribution function for the

Beta posterior distribution at the rth quantile, and Fr(a,b)

is the distribution function for an F-distribution with a,b
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degrees of freedom. Equation 4.3 was previously mentioned

in Chapter III. We also used a software package developed

by Dr. Peter W. Zehna of the Naval Postgraduate School to

evaluate the F-distribution at r. This was done in the

following manner:

I. We selected integer values of sample size n that were
at, or near, 500 and 1000. These values were selected
to insure that a* and #* were also integers.

2. We computed a* and 0* using Equations 4.1 and 4.2
respectively.

3. The values of F0.025 (2a*, 20*) and F0 .975 (2a*, 2p*),
where a* and P* were calculated using n near 500, were
placed in a vector, along with the value of n and
saved in the APL workspace. This vector is referred
to as the X vector.

4. The values of F0 .025 (2a*, 20*) and Fp.975 (2Q*, 20*),
where a* and 8* were calculated using n near 1000,
were placed in a vector along with the value of n and
saved in the APL workspace. This vector is referred
to as the Y vector.

To employ our method we developed an APL program named

CHARTPLUS located in Appendix E. CHARTPLUS is the main

program used in our analysis and it accomplishes several

functions. First, CHARTPLUS provides the subjective bounds

associated with the parameters of the Beta prior distribu-

tion. It creates a table similar to Table 4. Finally,

CHARTPLUS makes a vector of the lower bounds, the upper

bounds and the confidence interval size, for each sample

size.

To use CHARTPLUS, the user is required to enter the

parameters of the prior Beta distribution, a vector of

various sample sizes, and the X and Y vectors described

24
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TABLE 4

THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN
CONFIDENCE INTERVAL, WITH BETA PRIOR

(a -4, 0 - 4) AND k - (a/a + 0) n
SUCCESS IN THE SAMPLE

SAMPLE LOWER UPPER DESIRED
SIZEn BOUND BOUND SIZE 2A

1 4.50w) 4.5W00 .1990 .8010 .6021
2 5.()0 5.0000 .2 120 .7880 .5760
3 5.5000 5.5000 .2235 .7765 .5529
4 6.0000 6.0000 .2338 .7662 .5324
5 6.5000 6.5000 .2430 .7570 .5140
6 7.0o0 7.00 .2513 .7487 .4973
7 7.5000 7.5000 .25S9 .7411 .4821
8 8.0)00 8.X00 .2659 .7341 .4683
9 8.5000 8.500) .2722 .7278 .4555
10 9.0000 9.0000 .2781 .7219 .4438
15 11.5000 11.5000 .3020 .6980 .3961
20 14.0000 14.0000 .3195 .6805 .3610
25 16.5000 16.5000 .3331 .6669 .3338
30 19.0000 19.0000 .3440 .6560 .3120
35 21.5000 21.5000 .3530 .6470 .2940
40 24.0000 24.0000 .3606 .6394 .2787
45 26.5000 26.5000 .3672 .6328 .2656
50 29.0000 29.0000 .3729 .6271 .2542
55 31.5000 31.5000 .3779 .6221 .2441
60 34.0000 34.0000 .3824 .6176 .2352
65 36.5000 36.5000 .3864 .6136 .2272
70 39.0000 39.0000 .3900 .6100 .2199
75 41.5000 41.5000 .3934 .6066 .2133
so 44.0000 44.0000 .3964 .6036 .2072
85 46.5000 46.5000 .3992 .6008 .2017
90 49.0000 49.0000 .4017 .5983 .1966
100 54.0000 54.000 .4063 .5937 .1874
110 59.0000 59.0000 .4103 .5897 .1793
120 64.0000 64.0000 .4139 .5861 .1723
130 69.0000 69.0000 .4170 .5830 .1660
140 74.0000 74.0000 .4198 .5802 .1603
150 79.0000 79.0000 .4224 .5776 .1552
160 84.0000 84.0000 .4247 .5753 .1506
170 8%.0000 89.0000 .4268 .5732 .1463
180 94.000) 94.0000 .4288 .5712 .1424
190 99.0000 99.0000 .4306 .5694 .1388
200 104.0000 104.0000 .4323 .5677 .1354
504 256.0000 256.000 .4568 .5433 .0865
1000 504.0000 504.0000 .4692 .5308 .0617

25



earlier in this section. CHARTPS starts a loop that

evaluates each value of our vector of sample sizes.

Typically, our vectors contained values of sample sizes from

1 to 200. CHARTPLUS can evaluate vectors with other values

of sample size. However, a 'good rule of thumb' is to limit

the maximum sample size to 200. This is due to BQUAN's

inability to compute large values of a* and B*.

After CHARTPLUS initiates looping it calls subroutine

INTER2 (see Appendix E). INTER2 calculates a* and 0* using

Equations 4.1 and 4.2. Then INTER2 calls subroutines BQUAN,

NQUAN and BETA to calculate the inverse cumulative distribu-

tion functions for the Beta posterior distribution with

parameters a*, P* at 0.025 and 0.975. This gives us the

upper and lower values of our confidence interval. INTER2

then subtracts the lower bound from the upper bound to

obtain the confidence interval size and returns to CHART-

PLUS.

CHARTPLUS then formats the output and creates vectors in

the APL workspace of the lower bounds, the upper bounds and

the confidence interval sizes. CHARTPLUS continues to loop

until our sample size vector is exhausted. Then CHARTPLUS

calls subroutine CHARTER.

CHARTER is located in Appendix E and uses the X and Y

vectors to calculate a*, 0*, the lower and upper bounds of

the confidence interval and the interval size for the values

of sample size n at, or near, 500 and 1000. CHARTER then
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formats the output in the exact sme way am CHARTPLUS and

concatenates each of the three vectors created in CHARTPLUS

with the lover bound, upper bound, and interval size for n

at or near 500 and 1000.

If we plot our vector of lower bounds and our vector of

upper bounds as a function of our sample size vector we can

obtain graphs shown in Figure 2 and in Appendix B. It is

important that the decision maker realize these figures are

not the confidence intervals. The actual confidence

intervals must be determined after the samples are taken.

If we plot our vector of confidence interval sizes as a

function of our sample size vector we obtain graphs as shown

in Figure 3 and in Appendix B. These graphs can prove to be

useful to the decision makcer as seen in the following

example,

10 ION

Figure 2 The Relation of Sample Siz, and the Bounds of
the Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a -4, # -4
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the graph to where 0.20 intercepts the curve, and read

approximately 87 off the abscissa. This is the most

appropriate sample size for n that reflects both the
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decision maker's subjective bounds and his desired 95%

confidence interval size.

In the next section we will introduce a pair of computer

programs that can be used to obtain the same results as

graphing the confidence interval size for specific para-

meters of the Beta prior distribution.

C. DETERMINING SAMPLE SIZE USING COMPUTER PROGRAMS

Because it is possible that the decision maker may be

without graphic capability and has input values not provided

in the tables here, we have developed a pair of computer

programs that can be used to facilitate his determination of

n using the parameters of the Beta prior distribution and a

desired 95% confidence interval size. We will do this by

explaining the computer programs in detail. Then we will

provtLde an example that will demonstrate how a decision

maker can use these programs to determine the needed sample

size to estimate a proportion.

The APL program SCHARTS was developed to assist the user

in finding an interval of sample sizes. This interval

contains the exact number of samples necessary to achieve

the decision maker's desired 95% confidence interval size

and is determined using the parameters that best fit his

subjective bounds.

SCHARTS, located in Appendix F, requires the user to

input the parameters of Beta prior distribution and a vector

of various sample sizes. SCHARTS analyzes the sample size
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vector and identifies the two elements in the vector between

which the exact number of samples required lies. If the

vector of sample sizes fails to contain this exact number

necessary to satisfy the decision maker's criteria, SCHARTS

will inform the user.

SCHARTS is a modification of CHARTPLUS, uses the same

subroutines (with the exception of CHARTER), and in general

cannot evaluate sample sizes greater than 200.

Once we have found the interval containing the required

number of samples, we use the APL program entitled CHARTS

located in Appendix E. CHARTS allows the user to enter new

sample size vectors of any length and produces parameters

a*, P*, together with the lower and upper bounds of the

confidence interval, and the 95% confidence interval size

for each element in the vector.

CHARTS asks the user to input the parameters of the Beta

prior distribution and a vector (of any length) of various

sample sizes. The user should select a vector that contains

all the integer values of the interval identified by

SCHARTS. If the user inputs these elements in numerical

order his output will be in the order of decreasing

confidence interval size. This will allow the user to

select the smallest value of sample sizes that meets or

surpasses his desired 95% confidence interval size.

Suppose, continuing our example, that our decision

maker's Beta prior distribution has the parameters a -4,
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p = 4 and his desired 95% confidence interval size is 0.20.

Then he can use SCHARTS and CHARTS in the following manner

to determine the sample size that will meet his goals.

We will identify our vector of sample sizes as C. We

assign C the values in the following APL session shown in

Figure 4.

C+30 40 50 60 70 80 90
SCHARTS

ENTER ALPHA AND BETA PARAMETERS
0:

4 4
ENTER VECTOR OF SAMPLE SIZES
0:

C
LIMITS FOR 0.20
ALPHA BETA N CI SIZE
4 4 80 .20725
4 4 90 .19655

CHARTS
ENTER VALUES OF ALPHA AND BETA PARAMETERS
0:

4 4
ENTER NEW SAMPLE SIZE VECTOR, MUST ENTER AT LEAST 2 NUMBERS
0:

81 82 83 84 85 86 87 88 89
N A* 8* P.LO P.H1 CI SIZE

81.0000 44.5000 44.5000 .3970 .6030 .20610
82.0000 45.0000 45.0000 .3975 .6025 .20497
83.0000 45.5000 45.5000 .3981 .6019 .20386
84.0000 46.0000 46.0000 .3986 .6014 .20276
85.0000 46.5000 46.5000 .3992 .6008 .20169
86.0000 47.0000 47.0000 .3997 .6003 .20063
87.0000 47.5000 47.5000 .4002 .5998 .19958
88.0000 48.0000 48.0000 .4007 .5993 .19856
89.0000 48.5000 48.5000 .4012 .5988 .19755

Figure 4 An APL Session using the Programs

SCHARTS and CHARTS
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We see that when n is 87 we have surpassed our decision

maker's desired confidence interval size. Hence, 87 is the

number of samples he should take.

In the next chapter we will discuss other uses of the

Bayesian approach to find the number of samples needed to

obtain a desired 95% confidence interval size.
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V. SOME ADDITIONAL WAYS THAT THE BAYESIAN METHOD
CAN BE USED TO DETERMINE SAMPLE SIZE

In this chapter we will discuss other says that our

Bayesian approach can be used to assist in finding the

number of samples required to obtain a desired 95% con-

fidence interval size for a proportion.

First, we will discuss the relationship between

different Beta prior distributions with the same mean and

their sample sizes. We will accomplish this by deriving an

equation that illustrates this relationship. Then we will

describe a computer program that can be used to graph this

relationship. We will also explain how analysts can use

this graph to determine sample size. Finally, we will

illustrate what happens to the sample size necessary to

achieve a desired 95% confidence interval size for a

proportion when the a parameter of the prior distribution is

held constant and the 0 parameter is varied. We will do

this by use of a graph with which the analyst can determine

the number of samples required for a particular 95%

confidence interval size as p is varied.

A. FINDING THE NECESSARY SAMPLE SIZE FOR BETA PRIOR

DISTRIBUTIONS WITH THE SAME MEAN

Suppose our prior density is Beta (a, ), so that the

mean for our prior density is
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If at some sample size n we obtain the desired confidence

interval size on our Beta posterior distribution, then for

any other prior density, Beta (a'~, 0$), whose mean is equal

to Q, we can determine the new sample size n" by

fl Ql (5.1)

We can show this by assuming that our desired confidence

interval size is achieved when our posterior is Beta (a*,

Pf). Let us also assume that

Ot (5.2)

and

Now, if we have a different Beta prior with parameters

a and fl, one can reason that there exists some sample size

value n' that, when used in our Bayesian approach, will

result in our posterior distribution being Beta (a*, ~)

Hence, we want

(5.4)

and

We must allow n" to be a continuous number. Wh~en we compare

Equation 5.2 with 5.4 we can state

S+ - o -f at~r +
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If the means of our two Beta prior distributions equal Q we

haveQ

When we solve for n" we get

n' =n+

It can be shown that this value of the new sample size n'

can be substituted into Equation 5.5 to obtain P*.

We used Equation 5.1 in developing the APL program named

SHEAN located in Appendix G. SHEAN provides the user with

the necessary sample size to obtain a desired 95% confidence

interval size when a - 1. It also provides the a parameter

when the necessary sample size is zero. Therefore, the user

has two points he can plot on a graph. In addition, SMEAN

provides the user with the slope of the line connecting

these two points.

SHEAN asks the user to provide the number of samples

necessary to obtain a desired 95% confidence interval size

for a proportion. In addition, it asks for the parameters

of the Beta prior distribution.

Figure 5 was constructed using SMEAN, from a Beta prior

distribution with parameters a - 4, 0 - 4. The necessary

sample sizes for each confidence interval size were

determined using Figure 3 in Chapter IV.

The analyst can use Figure 5 to determine the sample

size required for any a parameter. He can do this by

locating the a parameter that he wants on the abscissa, then
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ISIZE 0. 15

CSIZE 0. 20
I ClSIZE .25

Ci - 0.30

20 40 so 6
VALUE OF ALPHA - VALL OF BETA

Figure 5 Number of samples needed for estimation of a
proportion for a Beta Prior with Mean - 0.5

selects the desired 95% confidence interval size line, and

reads the corresponding ordinate.

If the analyst has no graphic capabilities, he can use

the APL program entitled GENERAL located in Appendix G.

GENERAL provides the user with the required sample size for

a desired 95% confidence interval size for different Beta

distributions which have the same mean. The user must know

the necessary sample size to obtain a desired 95% confidence

interval size for at least one of these Beta prior distribu-

tions.

In the last section of this chapter we will show what

happens to the required sample size when the a parameter of
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the prior distribution is held constant and the parameter

is varied.

B. DETERMINING THE REQUIRED SAMPLE SIZE AS THE PARAMETER

IS VARIED AND THE a PARAMETER IS HELD CONSTANT

In this section we demonstrate what happens to the

sample size required to obtain a desired 95% confidence

interval size as the P parameter of the prior distribution

is varied and the a parameter is held constant.

We accomplish this by constructing Figures 6 and 7.

These figures were constructed using the APL program CHARTS.

Through trial and error we entered vectors with different

sample sizes for n until we reached the exact 95% confidence

interval size for a particular a parameter of the prior

density. Then we changed our 0 parameter and repeated this

process. We used approximately 20 different values of 0 for

each a we evaluated. Then we plotted our results. It

should be mentioned that to do this we treated n as if it

were a continuous variable.

The analyst can use these charts by varying the

parameter of the prior distribution on the abscissa. Then,

he can find the curve for his a parameter and determine how

his sample size changes on the ordinate.

Similar graphs can be developed to see the effect of

varying a and holding constant using the methods discussed

in this section.
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VALUE OF BETA

Figure 6 Number of Samples needed for Estimation of a
Proportion when the a Parameter of the Beta Prior is

Constant, the P Parameter Varied, and Desired
Confidence Interval Size is 0.20.
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a 10 20 30 40 50

VALUE OF GTA

Figure 7 Number of Sample Needed for Estimation of a
Proportion When the a Parameter of the Beta Prior is
Constant, the P Parameter is Varied, and the Desired

Confidence Interval Size is 0.15.
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In the next chapter we will summarize what we have

accomplished, and suggest some additional research in using

Bayesian methods to reduce the number of observations needed

to estimate a proportion.
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VI. SUMM(ARY AND SUGGESTIONS FOR FURTHER STUDY

In this chapter we will summarize how we developed

tables and graphs, through Bayesian methods, which can be

used by a decision maker to relate confidence interval size

and the corresponding number of samples needed to produce

that or a smaller confidence interval for a proportion.

Included in this suimmary will be a comparison of the results

obtained using the tables and graphs with the Classical

Methods mentioned in Chapter II. Finally, we will make

recommendations for some additional research in using

Bayesian methods to reduce the number of observations needed

to estimate a proportion.

A. COMPENDIUM

In this paper we described a method that uses the Beta

distribution to place bounds on the possible outcomes for an

unknown proportion. Equipped with this method we were able

to create tables that could be used to find the appropriate

parameters a and P to give the Beta distribution that fits a

decision maker's subjective bounds.

Our next step was to evaluate the posterior Beta

distribution using various sample sizes. We did this by

calculating the lower bound, the upper bound, and the 95%

confidence interval size for each of the various sample

sizes. We then plotted the 95% confidence interval as a
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function of sample size and obtained the graphs in Appendix

B. The decision maker can use these graphs to determine the

number of samples needed to obtain a desired confidence

interval size.

As an example, if the decision maker wanted the size of

the 95% confidence interval to be 0.20 and his subjective

bounds on the proportion were 0.14 to 0.86, the parameter on

the Beta prior would be a - 4, - 4 and the number of

observations needed would be 87. If the decision maker's

subjective bounds were "tighter", then using our tables and

graphs would result in even fewer samples to obtain a final

confidence interval of the sample size. For example, if

subjective bounds reflected a - 15, P - 15, the number of

samples needed would be reduced to 65. These results

compare quite favorably to those obtained using non-Bayesian

methods where the number of samples needed is 96.

In the next section we suggest some additional studies

to enhance our understanding of the ways Bayesian methods

may be used to reduce the number of samples required to

estimate a proportion.

B. RECOIMENDATI OHS FOR FURTHER RESEARCH

This paper dealt solely with 95% confidence intervals.

It would extend the usefulness of this~ approach if tables

and graphs could be developed for other confidence interval

sizes, such as 90% and 99%.
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The techniques that we discussed used the Beta distribu-

tion for our prior density function. Other density

functions, such as the Uniform distribution, could be

considered for the prior density function. Here, the

subjective bounds could define the prior uniform (rec-

tangular) distribution for the proportion.

An addition to our research would be the development of

an APL program that could determine the inverse cumulative

density function of the Beta distribution for large values

of a and #. This could result in a more extensive set of

tables and graphs which could be used to determine sample

size.

It is sincerely hoped that the tables, graphs and

computer programs embodied in this thesis will be beneficial

to the Engineering Support Office at North Island Naval Air

Station and others faced with the problem of determining the

number of samples necessary to estimate proportion.
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APPENDIX A. TABLES THAT CAN BE USED TO DETERMINE TIE
PARAMETERS TO FIT A DECISION MAKER'S SUBJECTIVE BOUNDS

Table 5. NIEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIB-
UTION WITH ALPHA I AND BETA LESS THAN OR EQUAL 10
25

a P.lo Phi Mean Var

1 1 .010000 .990000 .500000 .083333
1 2 .0)5013 .899997 .333333 .055556
1 3 .003345 .784555 .250000 .037500
1 4 .002509 .683645 .200000 .026667

5 .002008 .601237 .166667 .019841
1 6 .001674 .534319 .1-2857 .015306
1 7 .001435 .479547 .125000 .012153
1 8 .0)1256 .434215 .111111 .009877
1 9 .001116 .396255 .1)000 .008182
1 10 .001005 .364105 .090909 .006887
1 1 .00)913 .336590 .083333 .05876
1 12 .000837 .312811 .076923 .005072
1 13 .000773 .292081 .071429 .004422
1 14 .00)718 .273864 .066667 .0)3889
1 15 .000670 .257741 .062500 .003447
1 16 .000628 .243376 .058824 .003076
1 17 .000591 .230503 .055556 .002762
1 18 .000558 .218904 .052632 .0)2493
1 19 .000529 .208402 .050000 .002262
1 20 .000502 .198850 .047619 .002061
1 21 .000478 .190126 .045455 .001886
1 22 .000457 .182128 .043478 .001733
1 23 .000437 .174770 .041667 .(9)1597
1 24 .000419 .167979 .040000 .001477
1 25 .000402 .161692 .038462 .0)1370
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Table 6. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIB.
UTION WITH ALPHA = I AND BETA BETWEEN 25 AND 50

_ P-lo P.hi Mean Var

1 26 .W00386 .155855 .037037 .(x01274
I 27 .004372 .150423 .035714 .001188
I 28 .000359 .145354 .034483 .001110
1 29 .000347 .140614 .033333 .001039
1 30 .00o335 .136171 .032258 .000976
1 31 .000324 .131999 .031250 .000917
1 32 .000314 .128075 .030303 .00)864
1 33 .000305 .124376 .029412 .000816
1 34 .00296 .120883 .028571 .t)771
1 35 .000287 .117581 .027778 .000730
1 36 .000279 .114454 .027027 .000692
1 37 .(0")272 .111488 .026316 .000657
1 38 .000264 .108672 .025641 .004)625
1 39 .oo258 .105993 .025000 .000595
1 40 .000251 .103444 .024390 .000507
1 41 .000245 .101014 .023810 .0005-11
1 42 .000239 .098695 .023256 .000516
i 43 .000234 .096480 .022727 .010494
1 44 .000228 .094361 .022222 .000472
1 45 .000223 .092334 .021739 .000452
1 46 .000218 .090392 .021277 .00O-4 34.1
1 47 .000214 .088530 .020833 .(h)10416
1 48 .000209 .086742 .020408 .01.0400
1 49 .000205 .085025 .020000 .000384
i 50 .000201 .083375 .019608 .000370
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Table 7. MEANS, VARIANCES AND 98% BOUNDS FOR A BErA DISiRIB-
UTION WITH ALPHA - 2 AND BETrA LESS THAN OR EQUAL 10
25

P.o P-hi Mean Var

2 1 .100635 .994987 .66o667 .055556
2 2 .058903 .)4 1097 .500000 .05u000
2 3 .041999 .859132 .400000 .04")()0
2 4 .032682 .777928 .333333 .o31746
2 5 .026763 .705686 .285714 .025510
2 6 .022665 .643365 .250000 .020833
2 7 .019658 .589942 .222222 .017284
2 8 .017357 .544034 .20000) .014545
2 9 .015538 .504353 .181818 .012397
2 10 .014065 .469816 .166667 .010o84
2 11 .012847 .439543 .153846 .009298
2 12 .011824 .412826 .142857 .008163
2 13 .010952 .389095 .133333 .007222
2 14 .010199 .367890 .125000 .(M)6434
2 15 .009544 .348838 .117647 .005767
2 16 .008967 .331633 .111111 .005198
2 17 .008457 .316023 .105263 .004709
2 18 .008001 .301800 100000 .0042S6
2 19 .007592 .288790 .095238 .003917
2 20 .(X)7223 .276844 .090909 .003593
2 21 .006888 .265840 .086957 .003308
2 22 .006582 .255670 .083333 .003056
2 23 .006303 .246245 .080000 .002831
2 24 .006046 .237485 .076923 .002630
2 25 .005810 .294-, .074074 .002450

46



Table 8. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIB-
UTION WITH ALPHA - 2 AND BETA BETWEEN 25 AND 50

t . Phi Mean Var

2 26 .005591 .22 17'2 .071429 .1A)2287
2 27 .005388 .214568 .068966 .0(2141)
2 28 .005200 .207877 .066667 .(9)2007
2 29 .005024 .201589 .064516 .001SS6
2 30 .00 859 .195668 .0o2500 .001776
2 31 .004706 .190084 .060606 .001674
2 32 .004561 .184809 .058824 .001582
2 33 .004425 .179818 .057143 .001497
2 34 .004297 .175089 .055556 .001418
2 35 .004176 .170601 .054054 .0013-46
2 36 .004062 .166337 .052632 .001278
2 37 .003954 .162280 .051282 .001216
2 38 .003851 .158416 .050000 .0o 1159
2 39 .0o3754 .154732 .048780 .001105
2 40 .003662 .151214 .047619 .001055
2 41 .003574 .147853 .046512 .001008
2 42 .003490 .144637 .045455 .000964
2 43 .003409 .141558 .044444 .000923
2 44 .003333 .138608 .043478 .0oossS
2 45 .003260 .135777 .042553 .000849
2 46 .043190 .133060 .041667 .000815
2 47 .003123 .130449 .040816 .000783
2 48 .003058 .127938 .040000 .000753
2 49 .002997 .125522 .039216 .000725
2 50 .002938 .123196 .038462 .000698
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Table 9. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIB-
LITION WITH ALPHA = 3 AND BETA LESS THAN OR EQUAL TO
25

_. P- P.hi Mean Var

3 1 .233813 .996655 .750000 .0375o0
3 2 .140868 .958001 .600000 .040000
3 3 .105640 .894360 .500000 .035714
3 4 .084730 .826930 .428571 .030612
3 5 .070804 .763676 .375000 .026042
3 6 .060840 .706770 .333333 .022222
3 7 .053348 .656315 .300000 .019091
3 8 .047507 .611743 .272727 .016529
3 9 .042823 .572323 .250000 .014423
3 10 .03S982 .537343 .230769 .012680
3 11 .035775 .506171 .214286 .011224
3 12 .033057 .478264 .2(0000 .010(0K
3 13 .030723 .453166 .187500 .008961
3 14 .028698 .430493 .176471 .008074
3 15 .026923 .409923 .166667 .007310
3 16 .025356 .391187 .157895 .0066-18
3 17 .023961 .374055 .150000 .006071
3 18 .022711 .358335 .142857 .005566
-3 19 .021586 .343864 .136364 .005120
3 20 .020567 .330500 .130435 .004726
3 21 .019640 .318123 .125000 .004375
3 22 .018793 .306630 .120000 .004062
3 23 .018016 .295930 .115385 .003780
3 24 .017301 .285945 .111111 .003527
3 25 .016640 .276606 .107143 .003299
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Table 10. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DIS-
TRIBUTION WI-IH ALPHA = 3 AND BETA BE1'VEEN 25 AND 50

l. I? P.lo P.hi Mean Var

3 26 .016028 .267853 .103448 .003092
3 27 i)15460 .259633 .100000 .002903
3 28 .014900 .251S99 .096774 .002732
3 29 .01.436 .244610 .093750 .002575
3 30 .013973 .237728 .090909 .002431
3 31 .013539 .231221 .088235 .002299
3 32 .013131 .225058 .085714 .002177
3 33 .012747 .219215 .083333 .002065
3 34 .012385 .213665 .081081 .001961
3 35 .012043 .208389 .078947 .001864
3 .36 .011719 .203366 .076923 .001775
3 37 .011412 .198578 .075000 .001692
3 38 .011121 .194010 .073171 .001615
3 39 .010844 .189646 .071429 .001542
3 40 .010581 .185474 .069767 .001475
3 41 .010330 .181481 .068182 .001412
3 42 .010091 .177656 .066667 .001353
3 43 .009863 .173988 .065217 .001297
3 44 .009645 .170469 .063830 .001245
3 45 .009436 .167088 .062500 .001196
3 46 .009236 .163839 .061224 .001150
3 47 .009045 .160713 .060000 .001106
3 48 .008861 .157704 .058824 .001065
3 49 .008684 .154805 .057692 .001026
3 50 .008515 .152011 .056604 .0009S9
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Table It. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DIS-
TRIBUTION WITH ALPHA = 4 AND BETA LESS THAN OR
EQUAL TO 25

L. P.io P.hi Mean Var

4 1 .421318 .997491 .800000 .026667
4 2 .222072 .967318 .666667 .031746
4 3 .173070 .915270 .571429 .030612
4 4 .142270 .857730 .500000 .027778
4 5 .120950 .801798 .444444 .024691
4 6 .105262 .749974 .40(0)0 .021818
4 7 .093214 .702884 .363636 .019284
4 8 .083660 .660417 .333333 .017094
4 9 .075895 .622193 .307692 .015216
4 10 .069455 .587759 .285714 .013605
4 11 .064028 .556669 .266667 .012222
4 12 .059390 .528514 .250000 .011029
4 13 .055381 .502936 .235294 .009996
4 14 .051880 .479621 .222222 .009097
4 15 .048797 .458298 .210526 .008310
4 16 .046061 .438734 .200000 .007619
4 17 .043615 .420729 .190476 .007009
4 Is .041417 .40,4110 .181818 .006468
4 19 .039430 .388727 .173913 .005986
4 20 .037625 .374451 .166667 .005556
4 21 .035978 .361170 .160000 .005169
4 22 .034470 .348784 .153846 .004821
4 23 .033083 .337208 .148148 .004507
4 24 .031804 .326367 .142857 .004222
4 25 .030620 .316193 .137931 .003964
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Table 12. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DIS-
TRIBUTION WITH ALPHA = 4 AND BETA BETWEEN 25 AND 50

__ __ P.lo P.hi Mean Var

4 26 .029521 .306628 .133333 .003728
4 27 .028498 .297619 .129032 .003512
4 28 .027544 .289119 .125000 .003314
4 29 .026651 .2810s8 .121212 .003133
4 30 .025815 .273487 .117647 .(9)29b6
4 31 .025030 .266283 .114286 .002812
4 32 .024291 .259447 .111111 .002669
4 33 .023594 .252951 .108108 .002537
4 34 .022936 .246770 .105263 .002415
4 35 .022314 .240882 .102564 .002301
4 36 .021725 .235267 .100000 .002195
4 37 .021166 .229907 .097561 .002096
4 38 .020636 .224784 .095238 .002(04
4 39 .020131 .219884 .093023 .001917
4 40 .019650 .215192 .090909 .001837
4 41 .019192 .210695 .088889 .001761
4 42 .018754 .206381 .086957 .001689
4 43 .018337 .202240 .085106 .001622
4 44 .017937 .198261 .083333 .001559
4 45 .017554 .194436 .081633 .001499
4 46 .017188 .190754 .o80000 .001443
4 47 .016836 .187209 .078431 .00139)
4 48 .016499 .183793 .076923 .001340
4 49 .016174 .180499 .075472 .001292
4 50 .015863 .177321 .074074 .001247
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Table 13. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DIS-
TRIBUTION WITH ALPHA - 5 AND BETA LESS THAN OR
EQUAL TO 25

P.1o P.hi Mean Var

5 1 .690656 .997992 .833333 .019841
5 2 .294314 .973237 .714286 .025510
5 3 .236324 .929196 .625000 .026042
5 4 .198202 .879050 .555556 .024691
5 5 .170965 .829035 .500000 .022727
5 6 .150443 .781662 .454545 .020661
5 7 .134388 .737798 .416667 .018697
5 8 .121467 .697596 .384615 .016906
5 9 .110835 .660900 .357143 .015306
5 10 .101929 .627435 .333333 .013889
5 11 .094356 .596893 .31250) .012638
5 12 .087838 .568971 .294118 .011534
5 13 .082166 .543388 .277778 .010559
5 14 .077185 .519890 .263158 .009695
5 15 .072776 .498252 .250000 .008929
5 16 .068845 .478276 .238095 .008246
5 17 .065318 .459787 .227273 .007636
5 18 .062136 .442633 .217391 .007089
*5 19 .059250 .426681 .208333 .006597
5 20 .056621 .411312 .200000 .006154
5 21 .054216 .397923 .192308 .005753
5 22 .052008 .384923 .185185 .005389
5 23 .049972 .372730 .178571 .005058
5 24 .048090 .361275 .172414 .004756
5 25 .046345 .350492 .166667 .004480
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Table 14. MEANS. VARIANCES AND 9.4% BOUNDS FOR A BETA DIS-
TRIBUTION WITH ALPHA = 5 AND BETA BETAVEEN 25 AND 50

_ _ P.1o P.hi Mean Var

5 26 .044722 .340326 .161290 .004227
5 27 .043210 .330727 .156250 .003995
5 28 .041796 .321647 .151515 .003781
5 29 .040472 .313048 .147059 .003584
5 30 .039229 .304892 .142857 .003401
5 31 .038061 .297146 .138889 .003232
5 32 .036960 .289781 .135135 .003076
5 33 .035921 .282769 .131579 .002930
5 34 .034939 .276086 .128205 .002794
5 35 .034009 .269709 .125000 .002668
5 36 .033128 .263619 .121951 .002550
5 37 .032291 .257795 .119048 .002439
5 38 .031495 .252222 .116279 .002335
5 39 .030738 .246883 .113636 .002238
5 40 .030016 .241765 .111111 .002147
5 41 .029328 .230853 .108696 .002061
5 42 .028670 .232136 .106383 .001981
5 43 .028041 .227602 .104167 .001904
5 44 .027439 .223241 .102041 .001833
5 45 .026863 .219043 .100000 .001765
5 46 .026310 .215000 .098039 .001701
5 47 .025779 .211103 .096154 .001640
5 48 .025270 .207344 .094340 .001582
5 49 .024780 .203716 .092593 .001528
5 50 .024309 .200212 .090909 .001476

I5
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APPENDIX B

GRAPHS OF BOUNDS OF CONFIDENCE INTERVALS AND SIZE OF
CONFIDENCE INTERVALS FOR VARIOUS BETA PRIOR DISTRIBUTION

...........
AMP.I 32 N IU 

l I g

Figure 8 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 4, p - 4

I:
!31

Figure 9 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 4, p - 4
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Figure 10 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 3, p - 6
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Figure 11 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 3, p " 6
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Figure 12 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 6, p - 3
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Figure 13 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 6, B - 3
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Figure 14 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a = , 6
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Figure 15 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 6, P - 6

57

za Il mmmumn um u u m -
IIi



0100

SAMI. 21 N

Figure 16 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 4, B - 9
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Figure 17 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 4, P - 9
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Figure 18 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a = 9, p - 4
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Figure 19 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 9, p - 4
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Figure 20 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 6, p - 16
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Figure 21 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 6, P - 16
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Figure 22 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a = 16, = 6

w
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Figure 23 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 16, P - 6
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Figure 24 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 5, B = 20
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Figure 25 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 5, D - 20
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Figure 26 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a = 20, = 5
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Figure 27 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 20, - 5
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Figure 28 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 15, P = 15
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Figure 29 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 15, P - 15
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Figure 30 The Relation of Sample Size and the Bounds of theBayesian 95% Confidence Interval with a Beta Prior
Distribution Having Parameters a - 5, $ - 30

In-

Figure 31 The Relation of Sample Size and the Size of theBayesian 95% Confidence Interval with a Beta Prior
Distribution Having Parameters a - 5, p - 30
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Figure 32 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a -30,p -5

10 M0 I0

Figure 33 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 30, p 5 5
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Figure 34 The Relation Of Sample Size and the sized of the
Bayesian 95 Confidence Interval with a Beta ProDisriutonHaving Parameters a 34,
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Fiqure 36 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 34, p 6

Figure 37 The Relation of Sample Size and the Size of the
Bayesian 95t Confidence Interval with a Beta Prior

Distribution Having Parameters a - 34, P - 6
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Figure 38 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 5, 40
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Figure 3g The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Havinq Parameters a - 5, P - 40
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Figure 40 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 40, p - 5
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Figure 41 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 40, p - 5
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Figure 42 The Relation of Sample 
Size and the Bounds of 

the

Bayesian 95% Confidence 
Interval with a Beta Prior

Distribution Having Parameters 
a - 5, P - 50

FigUre 43 The Relation of Sample Size 
and the Size of the

Bayesian 95% Confidence 
Interval with a Beta 

Prior

Distribution Having Parameters 
a - 5, 50

71



C* * c i Interval with ia

Diibto Haing Paaetr a 50,

SWAMLE SZE N

Figure 44 The Relation of Sample Size and the Bounds of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 50, p - 5

7[ 2

Figure 45 The Relation of Sample Size and the Size of the
Bayesian 95% Confidence Interval with a Beta Prior

Distribution Having Parameters a - 50, p - 5
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APPENDIX C. THE APL PROGRAM USED TO CONSTRUCT TABLES
THAT DETERMINE PARANIETERS OF THE BETA PRIOR

DISTRIBUTION

v SENSE
C1] a THIS PROGRAM CAN BE USED TO ESTABLISH BOUNDS FOR Tog BETA
[2) a DISTRIBUTION. THE USER CAN BE ASSURED THAT 98 PERCENT OF THE
[31 a DENSITY OF THE BETA DISTRIBUTION IS BETWEEN P.LO AND P.RI FOR
[C1 a EACH SET OF CORRESPONDING PARAMETERS. A MORE EXTENSIVE SET OF
C5] a TABLES CAN BE CREATED BY INCREASING THE NUMBERS FOR THE MAX VALUE
[6) a OF N IN LINE 22 AND THE MAX VALUE OF 9 IN LINE 24.
[7] I 0
[8] LOOPI:K.E+1
C9] clt ALPHA BETA P.LO P.1 MEAN VARIANCE'
[10) i(K>5)/NEXr
C113 N-0

[12] DDUMM.0
(13] .(DDVMM=O)/NEXT2
[14) NEXT:N.1
[15) NEXT2:AL.E
[16] LOOP2:N N+l
(17] VNUM*NxK
[18] VDEN14.(N+K)*2
C1gJ VDSN24-N+X+I
[20] VDEN+VDENIxVDEN2
C21) VAR.VNUM*VDEN
C22] BEN
C233 AVS414(X N)
C241] PARA.AL,BE
(25] PCT*PARA SQUAN 0.01 0.99
[26] OUTP-K,N,PCT,AVE, VAR
[273 6 0 I 0 15 6 11 6 10 6 10 6 uOUTP
(28) +(N<25)/LOOP2
[29] 0 1 '
[30) +(1<5)/LOOP1
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APPENDIX D. THE APL PROGRAMS DESIGNED AT NAVAL

POSTGRADUATE SCHOOL TO COMPUTE THE IN VERSE CDF OF

BETA DISTRIBUTION

V2 V+A EQUAN P;E:(J:S:D:L:Z:DENS:I;PP;M:XF;C2:C3;C4
(1 MPLEMENTATION OF CAjRER. 1947, BIomETRIxA FOR APPROXIMATE INVERSE BETA

(2) a 11/5/86 BEST FOR A(1)-e2xA(2). AND SEEMS TO WORK PINE
[3) a 12/27/86 Ajd 2 NjNQff-R~fffjQff itORIE; PQ QE EQS QMFAIB A1C.

[5) E*NgUAN 1-P
(63 U.(O 1+2xA
(7) S++/+U
[8) D.-/*t
C93 L*(-3+9*2),6
(10) Ze((S+2)xgx(L+2*S)*0.5)-Dx(L+(5*6)-S,3)-(D*2)x((2,S)*0.5)xEx(11+*2),l44

(12) LOOP:DENSeA(1)x(A(1)rlI++/A)x(V*A(1)-1)x(1-V)*A(2)-1
[13) V+V-((A BETA V)-P)+DENS
[14) -((I+I+1)!52)/LOOP

(16) l M UM f!E~ZQ EQS ET EUQATIlig &ffl ALI1. 12/31/86
11]1A MQDIfEf 1/1/87 Nilr A C9flhj,7j-Fijsail ZfXEE IEA1,1112.
C18) amopIEISQ 1/3/87 fll M1E HAN ANDQ 7TAND~A8 2syZlAr&QM. 482 1Q198AL QQutirIt
(193 A &EIR QH fav~ 8 is AUXES t a QREAI ZME EQ5 Qoil 11121). Ormu Val WQE
[20] ar Qi5) s rU aUsirl Vitul 15 uffQitfDZD. MQdQ&U 81 CQ55jls FISHER.
(21) SMALL:V-.X. ( pP )p0
(22) PP-PSM.+A(2).+/A

(253 X((X:1)/tpXJ.-1-1E 15
(26) *((r/A)2:1)/ONS
(27) START:F*(AE131.-I++/A)xAE13x(X*AE13-1)x(I-X)*AE23-1
(28) C24.((1-A(13)#)X)+(A(2]-1)*l-X
(29] C3.-(2xC2*2).((A(13-1).X*2)+(A(2)-1).(1-X)*2
(30) C4.(6xC2*3)+(7xC2x(C3-2xC2*2))+(1-A1)X*3).(A(2)-1),(1-X)*3
(313 F.(P-(A BETA X))*F
(32) V.-X+F+((C2xF*2),2)e.(C3x(F*3)46)+C4x(F*4),24
(33) V((V'1)/ipV).-1
(34) +0
(35) ONE:M+1-M
(36) S+(Mx(1-M)+1++/A)*0.5
(37) -((AlrA)=2)4+OLC
(38) X(PPItPX3+M+SxNqUAN PP/P

(40) +START
(41) X((-PP)/ipX1.w.SxNQUAzie-PP)/P
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7 Z.NQUAN P;A;B;C;D;Q:T;S;R;P
Ell IE~HN AL1Qrli AS ill PX SCASLEX SEHRffQER, AEEIE Srr 1977
£23 Fin &i VQAf Qf ERACLTNS ill uIBms WQBBEQUINLQ EFRUAL QAffZITIL
[33 &Lu~ ~i2 1r RD lacy ~ HUMIIAN 1.5x10* 8. OR Q WEZ~ ACCH/ACY.
£43 cl I fQ gr~BgM9 P UL12 &AV QLV Q11 119,6 N~jZQff-R~f~jQM1 LQQES.

£63 .(v/(( IQ*,P-0.5)50.42))/3+OLC
£7) 34-Z+,Q
[8) *EXT

£10] -(Fe((0,T)=QP))/2+OLC
£113 S*(0.42<[Q)/Q
£123 A* 2.50662823884 -18.6150006252 41.39119773534 -25.44106049637
[133 B* -8.4735109309 23.08336743743 -21.06224101826 3.13082909833
[11 T-Tx( ((.T*2)..*0, i3)+.xA).1+((T*2)o.*14)+.XB
£15) Z[(0.L42Z1Q)/tpQ].T
£163 -(F=1)10
£17] EXT:C- -2.78718931138 -2.29796479134 4.85014127135 2.32121276958
£181 D+ 3.54388924762 1.63706781897
£193 S-(xS)x((Re.*0 i3 )+.xC).1+(((R.( Ieo.5-IS)*0.5)e.* 1 2)+.xD)
£20] ZE(0.42<IQ)/xPQ).S
£213 *0
£2 23 ERR: I'ONE QR HQ81 E ZAL AM Q(I Qf RfAEQI.

7BETA £0]
V (l.A BETA X:;;:N;OD;EV:z:I

£13 a 12/27/86 KFkj&T ru c~6QE ~iA ~ A, A 00~~8 X (CJHQ ru
£2) oIFR8 I BQif icr 14 Id V!A5y ®r fiRQd 7 rQ 2 1.
£3) a I lf Alfjf~~Smuf QId 1E Z 'fI EQ CQPU IliRSQoUQl Aff
£43 a SA,2 ig,. 1978, E 325. B~QQ~ QI Z! I Q QI + /A5255. Sv~j rQ

[73 UJ.(p ,X)PO
£8] N+7++/(r/4)>(2xl4),10xt10
£9) *((+/Y)=0)/FLIP
£103 I/'-/X+,X
£113 OD4.Veo.x((UN)xA[2J-lN)*x/(N,2 )pAC13+i2xreN
£123 EV4.-JJ.x(x,((2N)P(AC13+0,lN-1), (+/A)4.0.N-1))*x/(N,2)pAC13+0,1(2xN-Z.1)
£13) L:Z.1+EV£;I].1+ODC;I].z
£143 -o( (I.I-i)/C.)I
£153 U£/IxPU3e(*Z)x(A£13!rl++A)x(N*AC1) )x(1-N)*A[23
£16) +((+/Y)=Px)/0
£173 FLIP:AeOA
£183 1/-'-(-YIX
£193 OD.Vs.x(UtN)xA£2)-iN),x/(N,2)pA£13+i2xr+N
£20) EV.-W..x(x,'((2.N)P(AC1]+0,iN-1), (+/A)+0,tN-1))4x/(N,2)pAC13+0.i(2xN-Z.1)
£213 LI:Z.1+EV£;Z]+1+ODC;I3*Z
£223 *C(Ir-1)>0)/L1
£233 LJCC-Y)/tp(/J.1-(*Z)X(At1] 1144./A)x(JI*A£13 )x(1-N)*A£23

p v
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APPENDIX E. THE APL PROGRAMS USED TO CONSTRUCT
GRAPHS THAT DETERMINE SAMPLE SIZE NEEDED FOR A DESIRED

CONFIDENCE INTERVAL SIZE

7 CHARTPLUS
C1) a THIS PROGRAM COMPUTES THE PARAMETERS OF A BETA POSTERIOR DISTRIBUTION
£2) a FOR A PARTICULAR BETA PRIOR DISTRIBUTION USING VARIOUS SAMPLE SIZES.
[3] A IT PROVIDES A TABLE THAT FURNISHES THE SAMPLE SIZE USED TO CALCULATE
[4] a THE PARAMETERS OF THE BETA POSTERIOR DISTRIBUTION (DENOTED BZ N). THE
C5 a PARAMETERS OF THE BETA POSTERIOR DISTRIBUTION (DENOTED BY A* AND B*),
C6) a THE LOWER AND UPPER BOUNDS FOR A 95 PERCENT CONFIDENCE INTERVAL(DE-
£7) q NOTED P.LO AND P.HI) AND THE SIZE OF THE CONFIDENCE INTERVAL.CHARTPLUS
[8) A USES SUBROUTINE INTER2 TO CALCULATE THE LOWER AND UPPER BOUNDS OF THE
£9) A THE CONFIDENCE INTERVAL. CHARTPLUS USES SUBROUTINE CHARTER TO PERFORM
[10) a THESE CALCULATIONS FOR SAMPLE SIZE NUMBERS AT OR NEAR 500 AND 1000.
[11I A THIS PROGRAM ALSO PROVIDES A VECTOR OF SAMPLE SIZES (DENOTED SAMSZ), A
£12] a VECTOR OF THE LOWER BOUNDS FOR EACH SAMPLE SIZE (DENOTED LBND).A VEC-
£13) A TOR OF UPPER BOUNDS (DENOTED UBND), AND A VECTOR OF CONFIDENCE INTER-
£14) VAL SIZES (DENOTED INTV). THESE VECTORS CAN BE USED TO PRODUCE GRAPHS
£15) A IN GRAFSTAT.
[163 O'ENTER PARAMETERS OF THE BETA PRIOR DISTRIBUTION'
[17) A O
£18) 0'ENTER VECTOR OF VARIOUS SAMPLE SIZES'
£193 C+O
[20) O 'ENTER X MATRIX'
[21) X+O
[22) 04-'ENTER 7 MATRIX'
C23) Y-0
[243 SD0.01,0.99
[25) 0 'THE VALUES OF ALPHA AND BETA PRIOR ARE'
[263 OA
[27) O-'THE PRIOR BELIEF OF P.LONER AND P.UPPER ARE'
[28 V A BQUANT SD
£29] 0 V
£303 04' '
£313 0 ' '
£32) 0 ' '
[33) 0+1 1
[34) 0' N A* B* P.LO P.rI CI SIZE'
£35) K+O
[363 R+pC
[37) SAMSZ O
[383 INTV .0
£39) LBND.0
[40) UBND.O
£41) LOOP:K*K+1
£42) DF CI]
[43) A INTER2 DF
£44) SAMSZ+SAMSZDF
£453 INTV+INTV.CI
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[461 LBND+LBND,PR2[l]
[47] UBND UBND,PR2[2)
[48) STUFF+DFFY,PR2,CI
[491 4 0 11 4 11 4 7 4 7 4 7 4 aSTUFF
[501 e(K<R)/LOOP
[511 X CHARTER Y
[521 SAMSZ -I+SAMSZ
[531 INTV I+INTV
[54) LBND+1+LBND
[55) UBND-1+UBND
[561 0-' 1V

V B INTER2 N
[1] n THIS SUBROUTINE IS USED TO COMPUTE UPPER AND LOWER BOUNDS FOR A 95
[21 A PERCENT CONFIDENCE INTERVAL. THE LEVEL OF CONFIDENCE CAN BE CHANGED
[3) A BY USING DIFFERENT VALUES IN LINES 11 AND 14 OF THIS SUBROUTINE.
[41 a FOR EXAMPLE IF WE DESIRED A 90 PERCENT CONFIDENCE INTERVAL WE COULD
C5) a CHANGE 0.025 IN LINE 11 TO 0.05 AND CHANGE 0.975 IN LINE 14 TO 0.95.
[6) n THIS WOULD RESULT IN THE LOWER AND UPPER BOUNDS FOR A 90 PERCENT
[7) a CONFIDENCE INTERVAL. IN ADDITION, THIS SUBROUTINE CALCULATES THE
[8) a VALUES OF ALPHA* AND BETA*, THE PARAMETERS FOR THE BETA POSTERIOR
[9) A DISTRIBUTION.
[101 RY B[11+((B[1)*(B[11+B[2]))xN)
[111 QY*+B[2+((B[21+(B[1)+B[21))xN)
[12) FY.RYQY
-13- FY BQUAN 0.025
[141 PI V
[15) +(Plzl)/HOPE
C161 V+FY SQUAN 0.975
[17) P2 V
[181 DUM+O
[19) +(DUM:O)/HOP
[20) HOPE:P14-0
[211 HOP:PR2+P1,P2
[22] CI PR2[2)-PR2[1]

V

V X CHARTER Y
[1) A THIS SUBROUTINE WAS DESIGNED TO WORK WITH A SOFTWARE PACKAGE
[21 A DEVELOPED BY DR. PETER W. ZERNA OF THE NPS. IN ORDER TO USE THIS
[3) A SUBROUTINE THE USER MUST SELECT INTEGER VALUES OF SAMPLE SIZE N AT,
[41 a OR NEAR 500 AND 1000, SO THAT THE BETA POSTERIOR PARAMETERS ARE
[5) a ALSO INTEGERS. THESE PARAMETERS ARE CALCULATED IN THE FOLLOWING
[6) A MANNER:
[7) A ALPHA* z ALPHA + ((ALPHA)M(ALPHA + BETA)) x N
[8) a BETA* = BETA + ((BETA)M(ALPHA + BETA)) x N.
[9) A THEN THE USER MUST FIND THE CDP OF THE F-DISTRIBUTION AT 0.025 AND
[10) a 0.975 USING 2 x ALPHA* AND 2 x BETA* DEGREES OF FREEDOM IN BOTH
[11 A CASES AND FOR EACH VALUE OF N.
[12) p
[13) A THE X VECTOR IS COMPRISED OF THE FOLLOWING ELEMENTS:
[14) a X = (CDF OF F AT 0.025,CDF OF F AT 0.975,N AT, OR NEAR 500)
[15) A (REMEMBER DEGREES OF FREEDOM ARE COMPUTED AT N NEAR 500)
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C£16) A
[17) A THE Y VECTOR IS COMPRISED OF THE FOLLOPING ELEMENTS:
[18) a Y7 (cDF OF F AT 0.025,CDF OF F AT 0.975,N AT, OR NEAR 1000)
£19) A (REMEMBER DEGREES OF FREEDOM ARE COMPUTED AT N NEAR 1000)
C20) RM*X£3)
£21) NM+A£1)+((A£1)4(A[11+A21))xRM)
£22) KM+A[2)+((A£23,(A£1)+A21))xRM)
£23] TM*NM.KM
£24) MC+-X£1)
£25) JC.-NMxMC
[26) SCi-KM+JC
£27) ABE-JC.SC
£28) MCM+-X£2)
£29) LM*NMxMCM
£30) SM4-KM+LM
£31) ASB4-LM#SN
£32) AM*AB,ASB
£33) AEM.ASB-AB
£34) SAMSZ.SAMSZ ,RM
£35) INTV.INTV,AEM
£36) LBND+LBND,AB
£37) UBND.UBND SASB
£38) POE.RM.TM,AM,AEM
£39) 4 0 11 4 11 4 7 4 7 4 7 4 *POE
£40) RBM*Y£3)
£41) NCM+-A£1)+((AE1)*(A£1)+A21))xRBM)
£42) KEMe-A£2)+((A£2)*(A£1)+A£23))xRBM)
£43) MTM+-NCM,KEM
£44) MJC*Y[1)
[453 JCC+-NCMxMJC
£46) SCC+KEM+JCC
£47) ABM*JCC*SCC
£48) MCM2+Y£2)
£49) LAM.-NCMxMCM2
£50) SMM+-KEM+LAM
£51) ASBM*LAM*SMM
£52) MAM+ABM,ASBM
£53) AEMS+-ASBM-ABN
£54) SANS Z+SAMSZ SRBM
£55) INTV*-INTV,AEMS
£56) LBND*LBND SASH
£57) UBND*UBND .ASBM
£58) APOE*RSMNTMMAN,AINS
£59) 4 0 11 4 11 4 7 '4 7 '4 7 '4 VAPOR

78



APPENDIX F. THE APL PROGRAMS USED TO DETERMINE SAMPLE

SIZE FOR USERS WITHOUT GRAPHIC CAPABILITIES

7 SCHARTS
[I] n THIS PROGRAM IS USED TO DETERMINE AN INTERVAL WITHIN WHICH THE
[2] a EXACT SAMPLE SIZE FOR A DESIRED CONFIDENCE INTERVAL LIES.
[3) O+'1ENTER ALPHA AND BETA PARAMETERS'
[4] A4-O
15] 0J.'ENTER VECTOR OF SAMPLE SIZES'
[6) C7+O3
[7] SD4-0.O1,0.99
£8) A BQUANT SD
£9) K.0
[10) RePC7
£11) RK'-0
£12) LOOP:E.-E+1
[13) KNe--
[143 M.-K+1
£15) DF.C7£R)
£16) A INTER2 DF
[17) ALF4-A £1)
£18) BAIT*A[2J
£19) RK.RK.CI
£20) CIS+RK £M)
£21) sIs*RIC£2)
£22) .a(SIS<cO.2)/LINK
£23) ASTUFF4-ALF,C7 ER) FYPR2.CI
£24) .j(CIScO.15)/TTEND
[253 *(CISSO.2)/OUTS
£26) -o(K<R)/LOOP
£27) -*(CIS>0.2)/TTEND
[28) OUTS:BOZO.0
£29) O-'LIMITS FOR 0.20'
£30) O.'ALPHA BETA N CI SIZE'
£31) STUFF1e-ALP,BAIT.C7[ERR) RK ER)
£32] STUFF*ALF,BAiT,C7(RJ ,RR EM)
£33) AOUTS: 9 4 11 4 11 4 7 4 7 4 8 5 *STUFF
£34] 3 05 060 10 5 fSTUFFI
£351 3 0 5 0 6 0 1.0 5 *STUFF
£36) FUN.0
£37) e(FUNcl)/POOP
£38) LINK:04-'SORRY NO GO FOR 0.20'
£39) -(SIS<O.15)/POOTr
£40) POOP:K.+1
£41) DFe-C7 ER)
£42) KNeE-i
£43) M+K+l
£44) A INTER2 DF
£45] RK-oRK, CI
£46) c15-RK CM]
£47) *p(CISS0.15)/OUT
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[483 *(K'R)/POOP
[49) FOOT:0*'SORRY NO GO FOR 0.15'
[50) GUM4-0
[51) *b(GUM=O)/TEND
[52) TTEND:0+'SORRY NO GO ON THIS ONE FOR 0.20 OR 0.15'
[53) VDl.1+0
C54) -%(DUM~0)/TEND
[55) OUTP:BOZO-0
[56) 0'-'LIMITS FOR 0.15'
[57) 0.'1ALPHA BETA N CI SIZE'
[58) STUFFe-ALF,BAIT,C7[KN) .RK[K]
C59) 3 0 5 0 6 0 10 5 *STUFF
[60) STUFFIeALF,BAIT,C7[C),RK[M)
[61) 3 0 5 0 6 0 10 5 oSTUFFl
[62] TEND:0*1PROGRAM COMPLETE'

V CHARTS
[I] A THIS PROGRAM PROVIDES AN ABRIDGED VERSION OF CHARTPLUS AND IS
[2) A CAPABLE OF COMPUTING CONFIDENCE INTERVAL SIZES FOR CONTINUOUS
[3) a VALUES OF N (NUMBER OF SAMPLES REQUIRED)
[4) 04-'ENTER VALUES OF ALPHA AND BETA PARAMETERS'
[5) A4-0
[6) D+'ENTER NEW SAMPLE SIZE VECTOR, MUST ENTER AT LEAST 2 NUMBERS'
[7) C7*O
[8) 0+'. N A* B* P.LO P.HI CI SIZE'
[93 K*0
[10) R4-pC7
(11) LOOP:K*K+1
[12) DF*C7(K)
[13) A INTER2 DF
[14) STUFF4-DF,FY,PR2,CI
£15) 9 4 11 4 11 4 7 4 7 4 8 5 fSTUFF
[16) *(K<R)/LOOP
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APPENDIX G. THE APL PROGRAMS USED TO FIND SAMPLE SIZE

FOR DIFFERENT BETA PRIOR DISTRIBUTIONS WITH THE SAME

MEANS

V SMEAN
[1 a THIS PROGRAM ALLOWS ONE TO CALCULATE THE POINTS NECESSARY TO PLOT
[21 a A LINE THAT CAN BE USED TO DETERMINE THE REQUIRED NUMBER OF SAMPLES
[3) A THAT ATTAIN A DESIRED CONFIDENCE INTERVAL SIZE FOR BETA PRIOR DS-
E4) a TRIBUTIONS WITH THE SAME MEANS. TO USE THIS PROGRAM THE USER MUST
[5 a KNOW THE REQUIRED SAMPLE SIZE FOR AT LEAST ONE SET OF PARAMETERS.
[61 0+'INPUT ALPHA AND BETA'
[73 AIA2+0
[] 0 'INPUT THE NUMBER OF SAMPLES NEEDED TO ATTAIN THE DESIRED INTERVAL SIZE

E9) SNUM 0
[10E EV.AlA2[1E(A1A211]+AIA2E2])
[II XINT+AlA2[1]+(SNUxEV)
C12] NUMPR+SNUM+((AIA2[1]-l)+EV)
13) NSLOP.NUMPR

[141 DSLOP I-XINT
[15) SLOPE NSLOP*DSLOP
[16] NSLOPE 'lxSLOPE
[173 O.'THE NECESSARY SAMPLE SIZE NEEDED AT ALPHA I FOR A MEAN OF lI(wEV),l

IS '.(YNUMPR)
[1] O.'THE VALUE OF ALPHA FOR WHICH NO SAMPLES ARE NEEDED (X INTERCEPT) FOR A

BETA DISTRIBUTION WITH A MEAN OF '.(weV),' IS ',(oXINT)
[19 0.'AS ALPHA IS INCREASED BY ONE THE NECESSARY SAMPLE SIZE OF THIS BETA

DISTRIBUTION IS DECREASED BY '.(eNSLOPE)V

V GENERAL
[] A THIS PROGRAM CAN BE USED TO DETERMINE A REQUIRED SAMPLE SIZE FOR A
C2J n BETA PRIOR DISTRIBUTION THAT HAS THE SAME MEAN AS A SECOND
E3) 3 BqTA PRIOR DISTRIBUTION BUT HAS DIFFERENT PARAMETERS. TO USE THIS
[4 3 PROGRAM THE USER MUST KNOW THE REQUIRED SAMPLE SIZE FOR THE SECOND
[5] A BETA DISTRIBUTION.
E63 O 'INPUT ORIGINAL AND SECOND ALPHAS'
[7] AIA2-0
[] 0+'INPUT NUMBER OF SAMPLES REQUIRED FOR ORIGINAL ALPHA'
E9) N O
103 0. 'INPUT THE MEAN (SHOULD BE THE SAME FOR BOTH ALPHAS)'
Ell] EV 0[12) NSAM+N+((AIA2[I3-A1A2E2] )#EV)
E13) 11 5 *NSAM
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APPENDIX H. TABLES SHOWING EFFECT OF SAMPLE SIZE WHEN

THE NUMBER OF SUCCESSES K - (THE MEAN OF THE BETA PRIOR)
TIMES (THE NUMBER OF TRIALS)

Table 15. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 4, BETA -
4)

SAMPLE LOWER UPPER DESIRED
SIZE n* B* BOUND BOUND SIZE 2A

1 4.5000 4.5000 .1990 .8010 .6021
5 6.500) 6.5000 .2430 .7570 .5140
10 9.0000 9.0000 .2781 .7219 .4438
15 11.5000 11.5000 .3020 .6980 .3961
20 14.0000 14.0000 .3195 .6805 .3610
30 19.0000 19.0000 .3440 .6560 .3120
40 24.0000 24.0000 .3606 .6394 .2787
50 29.0000 29.0000 .3729 .6271 .2542
60 34.0000 34.0000 .3824 .6176 .2352
70 39.0000 39.0000 .3900 .6100 .2199
80 44.0000 44.0000 .3964 .6036 .2072
90 49.0000 49.0000 .4017 .5983 .1966
100 54.0000 54.0000 .4063 .5937 .1874
110 59.0000 59.0000 .4103 .5897 .1793
120 64.0000 64.0000 .4139 .5861 .1723
130 69.0000 69.0000 .4170 .5830 .1660
140 74.0000 74.0000 .4198 .5802 .1603
150 79.0000 79.0000 .4224 .5776 .1552
160 84.0000 84.0000 .4247 .5753 .1506
170 89.0000 89.0000 .4268 .5732 .1463
ISO 94.0000 94.0000 .4288 .5712 .1424
190 99.0000 99.0000 .4306 .5694 .1388
200 104.0000 104.0000 .4323 .5677 .1354
504 256.0000 256.0000 .4568 .5433 .0S65
1000 504.0000 504.0000 .4692 .5308 .0617
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Table 16. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 3, BETA =
6)

SAMPLE LOWER UPPER DESIRED
SIZEn * f BOUND BOUND SIZE 2A

1 3.3333 6.6667 .0940 .6353 .5412
2 3.6667 7.3333 .1020 .6217 .5197
3 4.0000 8.0000 .1093 .6097 .5005
4 4.3333 8.6667 .1159 .5991 .4832
5 4.6667 9.3333 .1220 .5896 .4676
6 5.0000 10.000) .1276 .5810 .4534
7 5.3333 10.6667 .1328 .5732 .4404
8 5.6667 11.3333 .1376 .5661 .4285
9 6.0000 12.0000 .1421 .5596 .4175
10 6.3333 12.6667 .1463 .5536 .4073
15 8.0000 16.0000 .1638 .5292 .3654
20 9.6667 19.3333 .1771 .5114 .3343
25 11.3333 22.6667 .1877 .4976 .3099
3) 13.0000 26.00)0 .1963 .4865 .2902
35 14.6667 29.3333 .2036 .4774 .2738
40 16.3333 32.6667 .2098 .4697 .2599
45 18.0000 36.0000 .2152 .4632 .2480
50 19.6667 39.3333 .2199 .4574 .2375
55 21.3333 42.6667 .2241 .4524 .2283
60 23.000o) 46.0000 .2.79 .4479 .2200
65 24.6667 49.3333 .2313 .4439 .2126
70 26.3333 52.6667 .2344 .4403 .2059
75 28.0000 56.0000 .2372 .4370 .1998
80 29.6667 59.3333 .2398 .4340 .1942
90 33.0000 66.0000 .2444 .4287 .1843
100 36.3333 72.6667 .2483 .4241 .1758
110 39.6667 79.3333 .2518 .4201 .1683
120 43.0000 86.0000 .2549 .4167 .1617
130 46.3333 92.6667 .2577 .4135 .1559
140 49.6667 99.3333 .2601 .4108 .1506
150 53.0000 106.0000 .2624 .4082 .1459
160 56.3333 112.6667 .2644 .4060 .1415
504 171.0000 342.0000 .2932 .3747 .0815
900 303.0000 606.0000 .3031 .3643 .0612
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Table 17. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 6, BETA =
3)

SAMPLE LOWER UPPER DESIRED
SIZE n * BOUND BOUND SIZE 2A

1 6.6667 3.3333 .3647 .9060 .5412
2 7.3333 3.6667 .3783 .8980 .5197
3 8.0000 4.0000 .3903 .8907 .5(X)5
4 8.6667 4.3333 .4009 .8841 .4832
5 9.3333 4.6667 .4104 .8780 .4676
6 10.0000 5.0000 .4190 .8724 .4534
7 10.6667 5.3333 .4268 .8672 .4404
8 11.3333 5.6667 .4339 .8624 .4285
9 12.0000 6.X)00 .4404 .8579 .4175
10 12,6667 6.3333 4464 .8537 .4073
15 16.0000 8.0000 .4708 .8362 .3654
20 19.3333 9.6667 .4886 .8229 .3343
25 22,6667 11.3333 .5024 .8123 .3099
30 26.0000 13.0000 .5135 .8037 .2902
35 29.3333 14.6667 .5226 .7964 .2738
40 32.6667 16.3333 .5303 .7902 .2599
45 36.0000 18.0000 .5368 .7848 .2480
50 39.3333 19.6667 .5426 .7801 .2375
55 42,6667 21.3333 .5476 .7759 .2283
60 46.0000 23.00(0 .5521 .7721 .2200
65 49.3333 24.6667 .5561 .7687 .2126
70 52.6667 26.3333 .5597 .7656 .2059
75 56.0000 23.0000 .5630 .7628 .1998
80 59.3333 29.6667 .5660 .7602 .1942
90 66.0000 33.0000 .5713 .7556 .1843
100 72.6667 36.3333 .5759 .7517 .1758
110 79.3333 39.6667 .5799 .7482 .1683
120 86.0000 43.0000 .5833 .7451 .1617
130 92.6667 46.3333 .5865 .7423 .1559
140 99.3333 49.6667 .5892 .7399 .1506
150 106.0000 53.0000 .5918 .7376 .1459
160 112.6667 56.3333 .5940 .7356 .1415
504 342.0000 171.0000 .6253 .7068 .0815
900 606.0000 303.0000 .6357 .6969 .0612
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Table 18. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 6, BETA -
6)

SAMPLE LOWER UPPER DESIRED
SIZEn -* n* BOUND BOUND SIZE 2A

1 6.5000 6.5000 .2430 .7570 .5140
2 7.0000 7.0000 .2513 .7487 .4973
3 7.5001) 7.50ko .2589 .7411 .4821
4 8.0000 8.0000 .2659 .7341 .4683
5 8.5000 8.500 .2722 .7278 .4555
6 9.0000 9.0000 .2781 .7219 .4438
7 9.5000 9.5000 .2836 .7164 .4329
8 10.04"0 10.0000 .2886 .7114 .4227
9 10.5000 10.5000 .2934 .7066 .4132

10 11.0000 11.0000 .2978 .7022 .4044
15 13.5000 13.5000 .3164 .6836 .3673
20 16.0000 16.0000 .3306 .6694 .3388
25 18.500) 18.5000 .3420 .6580 .3160
30 2 1.u00 21.0000 .3513 .6487 .2973
35 23.5000 23.5000 .3592 .6408 .2816
40 26.004o) 26.0000 .3660 .6340 .2681
45 28.50X) 28.5000 .3718 .6282 .2564
50 31 .000 31.0000 .3770 .6230 .2461
55 33.5000 33.500) .3815 .6185 .2369
60 36.000 36.0000 .3856 .6144 .2287
65 38.5000 38.5000 .3894 .6106 .2213
70 41.0000 41.0000 .3927 .6073 .2146
75 43.500() 43.5000 .3958 .6042 .2084
80 46.0000 46.0000 .3986 .6014 .2028
85 48.5000 48.5000 .4012 .5988 .1975
90 51.0000 51.0000 .4036 .5964 .1927
100 56.0000 56.0000 .4080 .5920 .1840
110 61.0000 61.0000 .4118 .5882 .1764
120 66.0000 66.0000 .4152 .5848 .1697
130 71.0000 71.0000 .4182 .5818 .1637
140 76.0000 76.0000 .4209 .5791 .1582
150 81.0000 81.0000 .4233 .5767 .1533
164) 86.0000 86.0000 .4256 .5744 .1488
170 91.0000 91.0000 .4276 .5724 .1447
180 96.0000 96.0000 .4295 .5705 .1409
190 101.0000 101.0000 .4313 .5687 .1374
200 106.0000 106.0000 .4329 .5671 .1342
504 258.0000 258.0(0 .4569 .5431 .0862

1008 510.0000 510.0000 .4693 .5307 .0613
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Table 19. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WI[H BETA PRIOR (ALPHA = 4, BETA =
9)

SAMPLE LOWER UPPER DESIRED
SIZE n * BOUND BOUND SIZE 2A

1 4.3077 9.6923 .1049 .5623 .4574
2 4.6154 10.3846 .1101 .5536 .4435
3 4.9231 11.0769 .1150 .5458 .4308
4 5.2308 11.7692 .1195 .5386 .4192
5 5.5385 12.4615 .1237 .5321 .4084
6 5.8462 13.1538 .1276 .5260 .3984
7 6.1538 13.8462 .1313 .5204 .3891
8 6.4615 14.5385 .1348 .5152 .3805
9 6.7692 15.2308 .1380 .5104 .3723
10 7.0769 15.9231 .1411 .5059 .3647
15 8.6154 19.3846 .1544 .4870 .3326
20 10.1538 22.8462 .1649 .4725 .3076
25 11.6923 26.3077 .1735 .4611 .2876
30 13.2308 29.7692 .1807 .4516 .2710
35 14.7692 33.2308 .1868 .4438 .2570
40 16.3077 36.6923 .1921 .4370 .2449
45 17.8462 40.1538 .1968 .4312 .2344
50 19.3846 43.6154 .2009 .4261 .2252
55 20.9231 47.0769 .2046 .4215 .2169
60 22.4615 50.5385 .2079 .4174 .2095
65 24.0000 54.0000 .2109 .4138 .2028
70 25.5385 57.4615 .2137 .4105 .1967
7 27.0769 60.9231 .2162 .4074 .1912
80 28.6154 64.3846 .2186 .4046 .1861
90 31.6923 71.3077 .2228 .3997 .1769
100 34.7692 78.2308 .2264 .3954 .1690
110 37.8462 85.1538 .2296 .3917 .1621
120 40.9231 92.0769 .2324 .3884 .1560
130 44.0000 99.000) .2350 .3855 .1505
140 47.0769 105.9231 .2373 .3828 .1455
150 50.1538 112.8462 .2394 .3804 .1410
160 53.2308 119.7692 .2413 .3783 .1369
170 56.3077 126.6923 .2431 .3763 .1332
507 160.0000 360.0000 .2688 .3480 .0792
910 284.0000 639.0000 .2783 .3378 .0595
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Table 20. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 9, BETA -

4)

SAMPLE LOWER UPPER DESIRED
SIZE n BOUND BOUND SIZE 2A

1 9,6923 4.3077 .4377 .8951 .4574
2 10.3846 4.6154 .4464 .8899 .4435
3 11.0769 4.9231 .4542 .8850 .4308
4 11.7692 5.2308 .4614 .8805 .4192
5 12.4615 5.5385 .4679 .8763 .4084
6 13.1538 5.8462 .4740 .8724 .3984
7 13.8462 6.1538 .4796 .8687 .3891
8 14.5385 6.4615 .4848 .8652 .3805
9 15.2308 6.7692 .4896 .8620 .3723
10 15.9231 7.0769 .4941 .8589 .3647
15 19.3846 8.6154 .5130 .8456 .3326
20 22.8462 10.1538 .5275 .8351 .3076
25 26.3077 11.6923 .5389 .8265 .2876
30 29.7692 13.2308 .5484 .8193 .2710
35 33.2308 14.7692 .5562 .8132 .2570
40 36.6923 16.3077 .5630 .8079 .2449
45 40.1538 17.8462 .5688 .8032 .2344
50 43.6154 19.3846 .5739 .7991 .2252
55 47.0769 20.9231 .5785 .7954 .2169
60 50.5385 22.4615 .5826 .7921 .2095
65 54.00 24.0000 .5862 .7891 .2028
70 57.4615 25.5385 .5895 .7863 .1967
75 60.9231 27.0769 .5926 .7838 .1912
80 64.3846 28.6154 .5954 .7814 .1861
90 71.3077 31.6923 .6003 .7772 .1769
100 78.2308 34.7692 .6046 .7736 .1690
110 85.1538 37.8462 .6083 .704 .1621
120 92.0769 40.9231 .6116 .7676 .1560
130 99.0000 44.0000 .6145 .7650 .1505
140 105.9231 47.0769 .6172 .7627 .1455
150 112.8462 50.1538 .6196 .7606 .1410
160 119.7692 53.2308 .6217 .7587 .1369
170 126.6923 56.3077 .6237 .7569 .1332
507 360.0000 160.0000 .6520 .7312 .0792
910 639.0000 284.0000 .6622 .7217 .0595
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Table 21. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 6, BETA =
16)

SAMPLE LOWER UPPER DESIRED
SIZE n BOUND BOUND SIZE 2A

1 6.2727 16.7273 .1156 .4672 .3515
2 6.5455 17.4545 .1183 .4629 .3446
3 6.8182 18.1818 .1208 .4590 .3381
4 7.0909 18.9091 .1233 .4552 .3320
5 7.3636 19.6364 .1256 .4517 .3261
6 7.6364 20.3636 .1278 .4484 .3206
7 7.9091 21.0909 .1299 .4452 .3153
8 8.1818 21.8182 .1319 .4422 .3103
9 8.4545 22.5455 .1338 .4394 .3055
10 8.7273 23.2727 .1357 .4366 .3010
15 10.0909 26.9091 .1439 .4248 .2808
20 11.4545 30.5455 .1508 .4151 .2643
25 12.8182 34.1818 .1567 .4070 .2503
30 14.1818 37.8182 .1618 .4002 .2384
35 15.5455 41.4545 .1663 .3943 .2280
40 16.9091 45.0909 .1702 .3891 .2189
45 18.2727 48.7273 .1738 .3845 .2107
50 19.6364 52.3636 .1770 .3804 .2035
55 21.0)00 56.0000 .1799 .3768 .1969
60 22.3636 59.6364 .1825 .3734 .1909
65 23.7273 63.2727 .1849 .3704 .1854
70 25.0909 66.9091 .1872 .3676 .1804
75 26.4545 70.5455 .1893 .3651 .1758
80 27.8182 74.1818 .1912 .3627 .1715
90 30.5455 81.4545 .1947 .3585 .1638
100 33.2727 88.7273 .1977 .3548 .1570
110 36.0000 96.0000 .2005 .3515 .1510
120 38.7273 103.2727 .2029 .3486 .1457
130 41.4545 110.5455 .2051 .3460 .1409
140 44.1818 117.8182 .2071 .3436 .1365
150 46.9091 125.0909 .2090 .3415 .1325
160 49.6364 132.3636 .2107 .3395 .1288
170 52.3636 139.6364 .2122 .3377 .1255
180 55.0909 146.9091 .2137 .3360 .1223
506 144.0000 384.0000 .2356 .3115 .0759
1012 282.0000 752.0000 .240 .3003 .0542
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Table 22. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 16, BETA
6)

SAMPLE LOWER UPPER DESIRED
SIZE a_ BOL" I- BOUND SIZE 2A

1 16.7273 6.2727 .5328 .8844 .3515
2 17.4545 6.5455 .5371 .8817 .3446
3 18.1818 6.8182 .5410 .8792 .3381
4 18.9091 7.091)9 .5448 .8767 .3320

19.6364 7.3636 .5483 .8744 .3261
6 20.3636 7.6364 .5516 .8722 .3206
7 21.0909 7.9091 .5548 .8701 .3153
8 21.8182 8.1818 .5578 .8681 .3103
9 22.5455 8.4545 .5606 .8662 .3055
10 23.2727 8.7273 .5634 .8643 .3010
15 26.9091 10.0909 .5752 .8561 .2808
20 30.5455 11.4545 .5849 .8492 .2643
25 34.1818 12.8182 .5930 .8433 .2503
30 37.8182 14.1818 .5998 .8382 .2384
35 41.4545 15.5455 .6057 .8337 .2280
40 45.0909 16.9091 .6109 .8298 .2189
45 48.7273 18.2727 .6155 .8262 .2107
50 52.3636 19.6364 .6196 .8230 .2035

56.000) 21.04)) .(232 .8201 .1969
60 59.6364 22.3636 .6266 .8175 .1909
65 63.2727 23.7273 .6296 .8151 .1854
70 66.9091 25.0909 .6324 .8128 .1804
75 70.5455 26.4545 .6349 .8107 .1758
80 74.1818 27.8182 .6373 .8088 .1715
90 81.4545 30.5455 .0415 .8053 .1638
100 88.7273 33.2727 .0452 .8023 .1570
110 96.00 36.0000 .6485 .7995 .1510
120 103.2727 38.7273 .6514 .7971 .1457
130 110.5455 41.4545 .6540 .7949 .1409
140 117.8182 44.1818 .6564 .7929 .1365
150 125.0909 46.9091 .6585 .7910 .1325
160 132.3636 49.6364 .6605 .7893 .12S8
170 139.6364 52.3636 .6623 .7878 .1255
180 146.9091 55.0909 .6640 .7863 .1223
506 384.0000 144 .0000 .6885 .7644 .0759
1012 752.0000 282.0000 .0997 .7540 .0542
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Table 23. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 5, BETA
20)

SAMPLE LOWER UPPER DESIRED

SIZE n *t BOUND BOUNID SIZE 2A

1 5.2000 20.8000 .0732 .3702 .2971
2 5.4000 21.6000 .0750 .3669 .2919
3 5.6000 22.4000 .0767 .3637 .2869
4 5.8000 23.2000 .0784 .3606 .2823
5 6.0000 24.00') .0799 .3577 .2778
6 6.2000 24.80n) .0815 .3550 .2736
7 6.4000 25.6000 .0829 .3524 .2695
8 6.6000 26.4000 .0843 .3499 .2656
9 6.8000 27.2000 .0857 .3476 .2619
10 7.0000 28.0000 .0870 .3453 .2583
15 8.0000 32.0W0 .0930 .3353 .2424
20 9.0000 36.0000 .0980 .3271 .2291
25 10.0000 40.0000 .1024 .3202 .2178
30 11.0000 44.0000 .1063 .3143 .2080
35 12.0000 4S.0000 .1098 .3091 .1994
40 13.0)0 52.0000 .1128 .3046 .1918
45 14.0000 56.X)00 .1156 .3006 .1850
50 15.0000 60.0000 .1181 .2970 .1789
55 16.0000 64.0000 .1204 .2938 .1733
60 17.0000 (8.0000 ,1225 .2908 .1683
65 18.0000 72.0000 .1245 .2881 .1636
70 19.0000 76.0000 .1263 .2856 .1593
75 20.0000 80.000) .1280 .2834 .1554
80 21.0000 84.0000 .1296 .2813 .1517
85 22.0000 88.0000 .1310 .2793 .1483
90 23.0000 92.0000 .1324 .2775 .1451
100 25.0000 100.0000 .1349 .2742 .1392
110 27.0000 108.0000 .1372 .2712 .1340
120 29.0000 116.0000 .1392 .2686 .1294
130 31.000 '24.0000 .1411 .2663 .1252
140 33.0000 132.0000 .1427 .2641 .1214
150 35.0000 140.0000 .1443 .2622 .1179
160 37.0000 148.0000 .1457 .2604 .1147
170 39.0000 156.0000 .1470 .2588 .1118
ISO 41.0000 164.0000 .1483 .2573 .1090
190 43.0000 172.0000 .1494 .2559 .1065
200 45.0000 180.0000 .1505 .2546 .1041
500 105.0000 420.0000 .1669 .2352 .0683

1000 205.0000 820.0000 .1761 .2250 .0489
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Table 24. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 20, BETA
5)

SAMPLE LOWER UPPER DESIRED
SIZE ni* BOUND BOUND SIZE 2A

1 20.8000 5.2(0) .6298 .9268 .2971
2 21.6000 5.4(0 .6331 .9250 .2919
3 22.4000 5.6000 .6363 .9233 .2869
4 23.2000 5.8000 .6394 .9216 .2823
5 24.00) 6.0000 .6423 .9201 .2778
6 24.8000 6.2000 .6450 .9185 .2736
7 25.6000 6.4000 .6476 .9171 .2695
8 26.4000 6.6000 .6501 .9157 .2656
9 27.2000 6.8000 .6524 .9143 .2619
10 28.0000 7.0000 .6547 .9130 .2583
15 32.0000 8.0000 .6647 .9070 .2424
20 36.0000 9.0000 .6729 .9020 .2291
25 40.0000 10.(00 .6798 .8976 .2178
30 44.0000 11.0000 .6857 .8937 .2080
35 48.0000 12.0000 .6909 .8902 .1994
40 52.0000 13.0000 .6954 .8872 .1918
45 56.000 14.000M .6994 .8844 .1850
50 60.000 15.0000 .7030 .8819 .1789
55 64.0000 16.0000 .7062 .8796 .1733
60 68.0000 17.0000 .7092 .8775 .1683
65 72.000 18.0000 .7119 .8755 .1636
70" 76.0000 19.0)00 .7144 .8737 .1593
75 80.0000 20.0000 .7166 .8720 .1554
80 84.0000 21.0000 .7187 .8704 .1517
85 88.0000 22.0000 .7207 .8690 .1483
90 92.0000 23.0000 .7225 .8676 .1451
100 100.0000 25.0000 .7258 .8651 .1392
110 108.0000 27.0000 .7288 .8628 .1340
120 116.0000 29.0000 .7314 .8608 .1294
130 124.0000 31.0000 .7337 .8589 .1252
140 132.0000 33.0000 .7359 .8573 .1214
150 140.0000 35.0000 .7378 .8557 .1179
160 148.0000 37.0000 .7396 .8543 .1147
170 156.0000 39.0000 .7412 .8530 .1118
180 164.0000 41.0000 .7427 .8517 .1090
190 172.0000 43.0000 .741 .8506 .1065
200 180.0000 45.0000 .7454 .8495 .1041
500 420.0000 105.0000 .7648 .8331 .0683
1000 820.0000 205.0000 .7750 .8239 .0489
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Table 25. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 15, BETA =
15)

SAMPLE LOWER UPPER DESIRED
SIZE n * BOUND BOUND SIZE 2A

1 15.5000 15,500 .3280 .6720 .3440
2 16.0000 16.0000 .3306 .6694 .3388
3 16.500)0 16.5000 .3331 .6669 .3338
4 17.0000 17.0000 .3354 .6646 .3291
5 17.5000 17.5000 .3377 .6623 .3246
6 18.0000 18.0000 .3399 .6601 .3202
7 18.5000 18.5000 .3420 .6580 .3160
8 19.0000 19.0000 .3440 .6560 .3120
9 19.5000 19.5000 .3459 .6541 .3081
10 20.0000 20.0000 .3478 .6522 .3044
15 22.5000 22.5000 .3562 .6438 .2876
20 25.0000 25.0000 .3634 .6366 .2732
25 27.5000 27.5000 .3696 .6304 .2609
30 30.0000 30.0000 .3750 .6250 .2500
35 32.5000 32.5000 .3798 .6202 .2404
40 35.0000 35.0000 .3841 .6159 .2319
45 37.5000 37.5000 .3879 .6121 .2242
50 40.0000 40.0000 .3914 .6086 .2172
55 42.5000 42.5000 .3946 .6054 .2108
60 45.0000 45.0000 .3975 .6025 .2050
65 47.5000 47.5000 .4002 .5998 .1996
70 50.0000 50.0000 .4027 .5973 .1946
75 52.5000 52.5000 .4050 .5950 .1900
80 55.0000 55.0000 .4072 .5928 .1857
85 57.5000 57.5000 .4092 .5908 .1816
90 60.0000 60.0000 .4111 .5889 .1779
100 65.0000 65.0000 .4145 .5855 .1710
110 70.0000 70.0000 .4176 .5824 .1648
120 75.0000 75.0000 .4204 .5796 .1593
130 80.0000 80.0000 .4229 .5771 .1543
140 85.0000 85.0000 .4252 .5748 .1497
150 90.0000 90.0000 .4272 .5728 .1455
160 95.0000 95.0000 .4292 .5708 .1417
170 100.0000 100.0000 .4310 .5690 .1381
180 105.0000 105.0000 .4326 .5674 .1348
190 110.0000 110.0000 .4341 .5659 .1317
200 115.0000 115.0000 .4356 .5644 .1288
510 270.0000 270.0000 .4579 .5421 .0842
900 465.0000 465.0000 .4679 .5321 .0642
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Table 26. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 5, BETA=

i 30)542 3087 .00.72 .20

SAMPLE LOWER UPPER DESIRED
SIZE n a BOUND BOUND SIZE 2A

2 5.285 7 31.7143 .0514 .2706 .2192
35.4286 32.5714 .0523 .2687 .2164
45.5714 3348 .03 27 .18
55.7143 3425 .04.25 .12
65.8571 35. 1429 .0549 .2636 .2088
76.0000) 36.0000 .0557 .2620 .2064
86. 1429 36.8571 .0564 .2605 .2041
96.2857 37.7143 .0572 .2591 .2019

106.1286 38,5714 .0579 .2577 .1997
157.1429 42.8571 .0614 .2513 .1899
207.8571 47.1429 .0644 .2458 .1814
258.5714 51.4286 .0671 .2411 .1740
309.2857 55.7143 .0695 .2369 .1674

35 10.0000 60.0000 .0717 .2332 .1615
40 10.7143 64.2857 .0738 .2299 .1562
45 11.4186 68.5714 .0756 .2269 .1513
50 12.1429 72.8571 .0773 .2243 .1469
55 12.8571 77.1429 .0789 .2218 .1429
60 13.5714 81.4286 .0804 .2195 .1392
65 14.2857 85.7143 .0817 .2175 .1357
70 15.oKO 90.0000 .0830 .2155 .1325
75 15.7143 94.2857 .0842 .2138 .1295
s0 16.4286 98.5714 .0854 .2121 .1267
85 17.1429 102.8571 .0864 .2105 .1241
90 17.8571 107.1429 .0874 .2091 .1216

100 19.2857 115.7143 .0893 .2064 .1171
110 20.7143 124.2857 .0910 .2041 .1131
120 22.1429 132.8571 .0925 .2019 .1094
130 23.5714 141.4286 .0939 .2000 .1061
140 25.0000 150.0000 .0952 .1982 .1031
150 26.4286 158.5714 .0964 .1966 .1003
160 27.8571 167. 1429 .0975 .1952 .0977
170 29.2857 175.7143 .0985 .1938 .0953
180 30.7143 184.2857 .0995 .1925 .0931
190 32.1429 192.8571 .1004 .1914 .0910
200 33.5714 201.4286 .1012 .1903 .0891
525 80.0000 480.0000 .1151 .1730 .0579

1015 150.0000 900.0000 .1224 .1646 .0422
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Table 27. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA - 30, BETA=
5)

SAMPLE LOWVER UPPER DESIRED
SIZE n *BOUND BOUND SIZE 2A

1 30.8571 5. 1429 .7275 .9495 .2220
2 31.7143 5.2857 .72')4 .9486 .2192
3 32.5714 5.4286 .7313 .9477 .2164
4 33.4286 5.5714 .7330 .9468 .2138
5 34.2857 5.7143 .7347 .9460 .2112
6 35.1429 5.8571 .7364 .9451 .2088
7 36.0000 6.0000 .7380 .9443 .2064
8 36.8571 6.1429 .7395 .9436 .2041
9 37.7143 6.2857 .7409 .9428 .2019
10 38.5714 6.4286 .7423 .9421 .1997
15 42.8571 7.1429 .7487 .9386 .1899
20 47.1429 7.8571 .7542 .9356 .1814
25 51.4286 8.5714 .7589 .9329 .1740
30 55.7143 9,2857 .7631 .9305 .1674
35 60.0000 10.0000 .7668 .9283 .1615
40 64.2857 10.7143 .7701 .9262 .1562
45 68.5714 11.4286 .7731 .9244 .1513
50 72.8571 12.1429 .7757 .9227 .1469
55 77.1429 12.8571 .7782 .9211 .1429
60 81.42S6 13.5714 .7805 .9196 .1392
65 85.7143 14.2857 .7825 .9183 .1357
70 90.0000 15.0000 .7845 .9170 .1325
75 94.2857 15.7143 .7862 .9158 .1295
80 98.5714 16.4286 .7879 .9146 .1267
85 102.8571 17.1429 .7895 .9136 .1241
90 107.1429 17.8571 .7909 .9126 .1216
100 115.7143 19.2857 .7936 .9107 .1171
110 124.2857 20.7143 .7959 .9090 .1131
120 132.8571 22.1429 .7981 .9075 .1094
130 141.4286 23.5714 .8000 .9061 .1061
140 150.0000 25.0000 .8018 .9048 .1031
150 158.5714 26.4286 .8034 .9036 .1003
160 167.1429 27.8571 .8048 .9025 .0977
170 175.7143 29.2857 .8062 .9015 .0953
180 184.2857 30.7143 .8075 .9005 .0931
190 192.8571 32. 1429 .8086 .8996 .0910
200 201.4286 33.5714 .8097 .8988 .0891
525 480.0000 80.0000 .8270 .8849 .0579

1015 900.0000 150.0000 .8354 .8776 .0423
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Table 28. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, Wi rH BETA PRIOR (ALPHA = 6, BETA -
34)

SAMPLE LOVER UPPER DESIRED
SIZE n * BOUND BOUND SIZE 2A

1 6.1500 34.8500 .0595 .2726 .2132
2 6.3000 35.7000 .0603 .2710 .2107
3 6.4500 36.5500 .0611 .2695 .2084
4 6.6000 37.4000 .0619 .2680 .2061
5 6.7500 38.2500 .0627 .2666 .2039
6 6.9000 39.1(K)0 .0634 .2652 .2018
7 7.0500 39.9500 .0642 .2639 .1997
8 7.2000 40.8000 .0649 .2626 .1977
9 7.3500 41.6500 .0656 .2613 .1958
10 7.5000 42.5000 .0662 .2601 .1939
15 8.2500 46.7500 .0694 .2546 .1852
20 9.0000 51.0000 .0722 .2498 .1776
25 9.7500 55.2500 .0747 .2456 .1709
30 10.5000 59.5000 .0770 .2419 .1648
35 11.2500 63.7500 .0791 .2385 .1594
40 12.0000 68.0v0 .0810 .2355 .1545
45 12.7500 72.2500 .0828 .2328 .1500
50 13.5000 76.5000 .0844 .2303 .1458
55 14.2500 80.7500 .0859 .2280 .1420
60 15.0000 85.0000 .0874 .2259 .1385
65 15.7500 89.2500 .0887 .2239 .1352
70 16.5000 93.5000 .0899 .2221 .1322
75 17.2500 97.7500 .0911 .2204 .1293
80 18.0000 102.0000 .0922 .2188 .1267
85 18.7500 106.2500 .0932 .2174 .1242
90 19.5000 110.5000 .0942 .2160 .1218
100 21.0000 119.0000 .0960 .2134 .1174
110 22.5000 127.5000 .0977 .2112 .1135
120 24.0000 136.0000 .0992 .2091 .1099
130 25.5000 144.5000 .1005 .2072 .1067
140 27.0000 153.0000 .1018 .2055 .1037
150 28.5000 161.5000 .1030 .2040 .1010
160 30.0000 170.0000 .1041 .2025 .0985
170 31.5000 178.5000 .1051 .2012 .0961
180 33.0000 187.0000 .1061 .2000 .0939
190 34.5000 195.5000 .1069 .1988 .0919
200 36.0000 204.0000 .1078 .1977 .0900
520 84.0000 476.0000 .1217 .1807 .0590
920 144.0000 816.0000 .1281 .1733 .0452
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Table 29. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 34. BETA =
6)

SAMPLE LOWER UPPER DESIRED
SIZE n __ BOUND BOUND SIZE 2A

1 34.8500 6.1500 .7274 .9405 .2132
2 35.70 (O 6.30(x) .7290 .9397 .2107
3 36.5500 6.4500 .7305 .9389 .2084
4 37.4000 6.6000 .7320 .9381 .2061
5 38.2500 6.7500 .7334 .9373 .2039
6 39.1000 6.9000 .7348 .9366 .2018
7 39.9500 7.0500 .7361 .9358 .1997
8 40.8000 7.2000 .7374 .9351 .1977
9 41.6500 7.3500 .7387 .9344 .1958
10 42.5000 7.9)00 .7399 .9338 .1939
15 46.7500 8.2500 .7454 .9306 .1852
20 51.0000 9.0000 .7502 .9278 .1776
25 55.2500 9.7500 .7544 .9253 .1709
30 59.5000 10.5000 .7581 .9230 .1648
35 63,7500 11.2500 .7615 .9209 .1594
40 68.0000 12.0000 .7645 .9190 .1545
45 72.2500 12.7500 .7672 .9172 .1500
50 76.5000 13.5000 .7697 .9156 .1458
55 80.7500 14.2500 .7720 .9141 .1420
60 85.0000 15.0000 .7741 .9126 .1385
65 89.2500 15.7500 .7761 .9113 .1352
70 93.5000 16.5000 .7779 .9101 .1322
73 97.7500 17.2500 .7796 .9089 .1293
80 102.0000 18.0000 .7812 .9078 .1267
85 106.2500 18.7500 .7826 .9068 .1242
90 110.5000 19.5000 .7840 .9058 .1218
100 119.0000 21.00 .7866 .9040 .1174
11o 127.5000 22.5000 .7888 .9023 .1135
120 136.0000 24.0000 .7909 .9008 .1099
130 144.5000 25.5000 .7928 .8995 .1067
140 153.0000 27.0000 .7945 .8982 .1037
150 161.5000 28.5000 .7960 .8970 .1010
160 170.0000 30.0000 .7975 .8959 .0985
170 178.5000 31.5)00 .7988 .8949 .0961
18 187.0000 33.0000 .8000 .8939 .0939
190 195.5000 34.5000 .8012 .8931 .0919
200 204.0000 36.0000 .8023 .8922 .0900
520 476.0000 84.0000 .8193 .8783 .0590
920 816.0000 144.0000 .8267 .8719 .0451
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Table 30. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA - 5, BETA -
40)

SAMPLE LOWER UPPER DESIRED
SIZE n *__ BOUND BOUND SIZE 2A

! 5.1111 40.8889 .0385 .2154 .1769
2 5.2222 41.7778 .0391 .2142 .1751
3 5.3333 42.6667 .0396 .2130 .1734
4 5.4444 43.5556 .0402 .2118 .1717
5 5.5556 44.4444 .0407 .2107 .1700
6 5.6667 45.3333 .0412 .2096 .1684
7 5.7778 46.2222 .0417 .2086 .1669
8 5.8889 47.1111 .0422 .2076 .1654
9 6.0000 48.0000 .0427 .2066 .1639
10 6.1111 48.8889 .0432 .2056 .1625
15 6.6667 53.3333 .0454 .2012 .1558
20 7.2222 57.7778 .0474 .1973 .1499
25 7.7778 62.2222 .0492 .1939 .1447
30 8.3333 66.6667 .0509 .1908 .1399
35 8.8889 71.1111 .0525 .1881 .1356
40 9.4444 75.5556 .0539 .1856 .1317
45 10.0000 80.0000 .0552 .1833 .1281
50 10.5556 84.4444 .0565 .1812 .1248
55 11.1111 88.8889 .0576 .1793 .1217
60 11.6667 93.3333 .0587 .1775 .1188
65 12.2222 97.7778 .0597 .1759 .116170 12.7778 102.2222 .0607 .1743 .1136

75 13.3333 106.6667 .0616 .1729 .1113
80 13.8889 111.1111 .0624 .1715 .1091
85 14.4444 115.5556 .0632 .1703 .1070
90 15.0000 120.0000 .0640 .1691 .1051

100 16.1111 128.8889 .0655 .1669 .1014
110 17.2222 137.7778 .0668 .1649 .0982
120 18.3333 146.6667 .0680 .1632 .0952130 19.4444 155.5556 .0691 .1615 .0925
140 20.5556 164.4444 .0701 .1601 .0900
150 21.6667 173.3333 .0711 .1587 .0877
160 22.7778 182.2222 .0719 .1575 .0855
170 23.8889 191.1111 .0728 .1563 .0835
180 25.0000 200.0000 .0735 .1552 .0817
190 26.1111 208.8889 .0743 .1542 .0799
200 27.2222 217.7778 .o750 .1533 .0783
540 65.0000 520.0000 .0870 .1378 .0508
1035 120.0000 960.0000 .0931 .1305 .0374
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Tabl 31. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA - 40, BETA =
5)

SAMPLE LOWER UPPER DESIRED
SIZE n BOUND BOUND SIZE 2A

I 40.8889 5.1111 .7846 .9615 .1769
2 41.7778 5.2222 .7858 .9609 .1751
3 42.6667 5.3333 .7870 .9604 .1734
4 43.5556 5.4444 .7882 .9598 .1717
5 44.4444 5.5556 .7893 .9593 .1700
6 45.3333 5.6667 .7904 .9588 .1684
7 46.2222 5.7778 .7914 .9583 .1669
8 47.1111 5.8889 .7924 .9578 .1654
9 48.0OOO 6.0000 .7934 .9573 .1639
I0 48.8889 6.1111 .7944 .9568 .1625
15 53.3333 6.6667 .7988 .9546 .1558
20 57.7778 7.2222 .8027 .9526 .1499
25 62.2222 7.7778 .8061 .9508 .1447
30 66.6667 8.3333 .8092 .9491 .1399
35 71.1111 8.8889 .8119 .9475 .1356
40 75.5556 9.4444 .8144 .9461 .1317
45 80.)00 10.0000 .8167 .9448 1281
50 84.4444 10.5556 .8188 .9435 1248
55 88.8889 11.1111 .8207 .9424 .1217
60 93.3333 11.6667 .8225 .9413 .1188
65 97.7778 12.2222 .8241 .9403 .1161
70 102.2222 12.7778 .8257 .9393 .1136
75 106.6667 13.3333 .8271 .9384 .1113
8 111.1111 13.8889 .8285 .9376 .1091
85 115.5556 14.4444 .8297 .9368 .1074)
90 120.0000 15.0000 .8309 .9360 .1051
100 128.8889 16.1111 .8331 .9345 .1014
110 137.7778 17.2222 .8351 .9332 .0982
120 146.6667 18.3333 .8368 .9320 .0952
130 155.5556 19.4444 .8385 .9309 .0925
140 164.4444 20.5556 .8399 .9299 .0900
150 173.3333 21.6667 .8413 .9289 .0877
160 182.2222 22.7778 .,425 .9281 .0855
170 191.1111 23.8889 .8437 .9272 .0835
180 200.0000 25.0000 .S448 .9265 .0817
190 208.8889 26.1111 .S458 .9257 .0799
200 217.7778 27.2222 .S467 .9250 .0783
540 520.0000 65.000o .S622 .9130 .0508

1035 960.0000 120.000) .So95 .9069 .0375
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Table 32. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA - 5, BETA =
50)

SAMPLE LOWER UPPER DESIRED
SIZE n * BOUND BOUND SIZE 2A

1 5.0909 50.9091 .0311 .1781 .1469
2 5.1818 51.8182 .0315 .1772 .1457
3 5.2727 52.7273 .0319 .1764 .1445
4 5.3636 53.6364 .0323 .1756 .1433
5 5.4545 54.5455 .0326 .1748 .1422
6 5.5455 55.4545 .0330 .1740 .1410
7 5.6364 56.3636 .0333 .1733 .1400
8 5.7273 57.2727 .0337 .1725 .1389
9 5.8182 58.1818 .0340 .1718 .1378
10 5.9091 59.0909 .0343 .1711 .1368
15 6.3636 63.6364 .0359 .1679 .132 0
20 6.8182 68.1818 .0373 .1650 .1277
25 7.2727 72.7273 .0386 .1624 .123830) 7.7273 77.2727 .0398 .1601 1202

35 8.1818 81.8182 .0410 .1579 .1170
40 8.6364 86.3636 .0421 .1560 .1139
45 9.0909 90.9091 .0431 .1542 1111
50 9.5455 95.4545 .0440 .1525 .1085
55 10.0000 100.0000 .0449 .1510 .1061
60 10.4545 104.5455 .0457 .1495 .1038
65 10.9091 109.0909 .0465 .1482 .1017
70 11.3636 113.6364 .0472 .1469 .0997
75 11.8182 118.1818 .0480 .1457 .0978
SO 12.2727 122.7273 .0486 .1446 .0960
85 12.7273 127.2727 .0493 .1436 .0943
90 13.1818 131.8182 .0499 .1426 .0927
100 14.0909 140.9091 .0510 .1407 .0897
110 15.0000 150.0000 .0521 .1391 .0870
120 15.9091 159.0909 .0531 .1376 .0845
130 16.8182 168.1818 .0540 .1362 .0822
140 17.7273 177.2727 .0548 .1349 .0801
150 18.6364 186.3636 .0556 .1338 .0782
160 19.5455 195.4545 .0563 .1327 .0764
170 20.4545 204.5455 .0570 .1317 .0747
180 21.3636 213.6364 .0577 .1307 .0731
190 22.2727 222.7273 .0583 .1299 .0716
200 23.1818 231.8182 .0589 .1290 .0702
550 55.0000 550.0000 .0693 .1150 .0457
105 100.0000 1000.0000 .0746 .1086 .0339
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Table 33. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFI-
DENCE INTERVALS, WITH BETA PRIOR (ALPHA = 50, BETA =
5)

SAMPLE LOWER UPPER DESIRED
SIZE n O BOUND BOUND SIZE 2A

1 50.9091 5.0909 .8219 .9689 .1469
2 51.8182 5.1818 .8228 .9685 .1457
3 52.7273 5.2727 .8236 .9681 .1445
4 53.6364 5.3636 .8244 .9677 .1433
5 54.5455 5.4545 .8252 .9674 .1422
6 55.4545 5.5455 .8260 .9670 .1410
7 56.3636 5.6364 .8267 .9667 .1400
8 57.2727 5.7273 .8275 .9663 .1389
9 58.1818 5.8182 .8282 .9660 .1378
10 59.0909 5.9091 .8289 .9657 .1368
15 63.6364 6.3636 .8321 .9641 .1320
20 68.1818 6.8182 .8350 .9627 .1277
25 72.7273 7.2727 .8376 .9614 .1238
30 77.2727 7.7273 .8399 .9602 .1202
35 81.8182 8.1818 .8421 .9590 .1170
40 86.3636 8.6364 .8440 .9579 .1139
45 90.9091 9.0909 .8458 .9569 .1111
50 95.4545 9.5455 .8475 .9560 .1085
55 100.0000 10.0000 .8490 .9551 .1061
60 104.5455 10.4545 .8505 .9543 .1038
65 109.0909 10.9091 .8518 .9535 .1017
70 113.6364 11.3636 .8531 .9528 .0997
75 118.1818 11.8182 .8543 .9520 .0978
80 122.7273 12.2727 .8554 .9514 .0960
85 127.2727 12.7273 .8564 .9507 .0943
90 131.8182 13.1818 .8574 .9501 .0927
100 140.9091 14.0909 .8593 .9490 .0897
110 150.0000 15.0000 .8609 .9479 .0870
120 159.0909 15.9091 .8624 .9469 .0845
130 168.1818 16.8182 .8638 .9460 .0822
140 177.2727 17.7273 .8651 .9452 .0801
150 186.3636 18.6364 .8662 .9444 .0782
160 195.4545 19.5455 .8673 .9437 .0764
170 204.5455 20.4545 .8683 .9430 .0747
180 213.6364 21.3636 .8693 .9423 .0731
190 22217273 22.2727 .8701 .9417 .0716
200 231.8182 23.1818 .8710 .9411 .0702
550 550.0000 55.0000 .8850 .9307 .0457
1045 1000.0000 100.0000 .8914 .9254 .0339
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